
Research Strategy: 

1. Background and Significance 

1.1. Heterogeneity is a common feature of cancer. A better understanding of this heterogeneity may 
present therapeutic opportunities: Intratumor heterogeneity is a common feature across diverse cancer 
types1,2,3. Dynamic changes can be observed among intratumoral subclonal populations over time and 
following therapy, presenting challenges to current standards of cancer treatment6,7,8. Characterization of 
subclonal populations in cancer may enable precision medicine and the initiation of synergistic treatment 
combinations to target subclonal drivers and eliminate aggressive subpopulations to improve clinical outcome. 
Identification of subclonal driver mutations may also present new treatment options, particularly if these 
mutations fall within targetable pathways. Our proposal will yield innovative, novel statistical methods to enable 
the identification and characterization of subclonal populations in cancer using single cell RNA-seq data and 
yield open-source software that can be tailored and applied to diverse cancer types.  

1.2. Heterogeneity in CLL plays a role in clonal evolution to shape therapeutic resistance: CLL is a slow-
growing B cell malignancy that exhibits diverse combinations of clonal and subclonal somatic mutations along 
with a highly variable disease course among patients that remains poorly understood3,4. Our collaborators in 
the Wu group have recently established that the presence of particular subclonal mutations in CLL can be 
linked with adverse clinical outcomes using bulk samples and measurements5. Furthermore, these subclonal 
mutations change over time in response to therapy, suggesting an active evolutionary process, eventually 
leading to therapeutic resistance and relapse in many cases. While insights have been previously gained from 
bulk samples and measurements, further characterization on the single cell level is needed to more accurately 
dissect the pathway and regulatory features associated with subclonal mutations. Our proposal to analyze the 
transcriptomes of single CLL B cells derived from 3 CLL patients at various time points pre- and post-treatment 
and 4 additional CLL patients exhibiting different patterns of clonal and subclonal mutations will provide 
insights to the molecular mechanisms of relapse and progression in CLL.  

1.3. Statistical methods are needed to identify and connect genetic and transcriptional heterogeneity in 
single cells: Transcriptional heterogeneity can be observed in normal cell types such as neural progenitor 
cells23, and T cells24, as well as aberrant cell types such as cancer1,2. Differential properties such as genetic 
differences among cells may be responsible for this heterogeneity but how it is regulated, along with its direct 
consequences on cellular behavior, remains unclear. Applying traditional bulk protein analysis methods on 
single cells has met with varied degrees of success due to the high levels of technical as well as biological 
stochasticity and noise inherent in single-cell measurements. Therefore, novel statistical methods are needed 
to identify and connect genetic and transcriptional heterogeneity in single cells as well as identify putative 
subpopulations. Our previous work demonstrates that integration of cell specific error models and probabilistic 
weighting of observations improves the ability to separate cell types within a mixed single cell sample when 
clustering cells based on gene expression17,18. Our proposal will apply these statistical approach as well as 
develop new approaches to improve characterization of genetic and transcriptional single cell heterogeneity 
and subsequently enhance our understanding of cellular variability and its connection to genetic differences as 
well as biological consequences.  

2. Approach 

The hallmarks of CLL make this cancer a particularly compelling model upon which to develop statistical 
methods for connecting genetic and transcriptional heterogeneity at the single cell level. Through my 
collaboration with the Wu lab, I have access to single-cell RNA-seq data for 7 CLL patient samples (CW14, 
CW106, CW84, CW236, MDA1, MDA2, MDA3) with known clonal and subclonal somatic mutations previously 
identified by bulk WES. Additional single-cell RNA-seq will also be generated as a part of separate research 
efforts. Here, I propose a series of single-cell studies to identify and connect patterns of genetic to 
transcriptional heterogeneity and associate clinical outcomes. First, I will develop a hierarchical Bayesian 
framework for to make probabilistic inferences on presence or absence of CNVs and SNVs inferred from 
single-cell RNAseq data. Second, I will reconstruct subclonal architectures, impute the order of genetic 
alterations incurred, and identify genetic subclones based on somatic mutations inferred from Aim 1 within CLL 
cases. Third, I will identify differentially expressed genes and pathways, with particular emphasis on pathways 
involved in RNA splicing, apoptosis, cell proliferation, cellular senescence, DNA damage repair, inflammation, 
Wnt and Notch signaling, to characterize these subpopulations. I will integrate treatment time course data for 3 
patients (MDA1; 5 time points, MDA2; 3 time points, MDA3; 3 time points) to directly associate transcriptional 
features with treatment response and relapse.  



2.1. Aim 1: Inferring somatic mutations from single-cell RNA-seq data. 

2.1.1. Preliminary data:  

2.1.1.a. Intratumoral genetic heterogeneity can be observed in CLL and is linked with adverse clinical outcome. 
My collaborators in the Wu group have previously revealed that the presence of subclonal mutations in CLL 
can be linked with adverse clinical outcomes5. The Wu group and other investigators have identified several 
novel putative CLL drivers, including the splice factor SF3B1, LCP1, and WNK126. The mechanisms by which 
these mutations confer impacts CLL biology is unknown. 

2.1.1.b. SNVs called from single-cell RNA-seq can be used to distinguish cell lines. Despite being limited to 
variants within the expressed exons, SNVs derived from RNA-seq can still be used to separate genetically 
distinct single cells. Previously, using single-cell RNA-seq data and a benchmark variant sets identified from 
WES for GM12878 and K562 cell lines, we evaluated the sensitivity and precision of such RNA-based SNV 
calls, comparing various combinations of aligners and variant callers. We found that sufficiently high 
performance can be achieved for SNVs within highly expressed genes (Fig. 1a). Using simulated mixtures of 
GM1282 and K562 single cells, we are able to separate these genetically distinct cell types based on a small 
fraction of SNVs called from 
single-cell RNA-seq data (Fig. 
1b) . Single cells from the 
same CLL patient sample will 
come from the same genetic 
background and harbor less 
distinctive subclonal SNVs, 
t h u s c r e a t i n g a m o r e 
challenging problem in need 
o f add i t iona l s ta t is t ica l 
methods and alternative data 
integration such as CNVs.  

2.1.1.c. Biased allele expression can be observed within CNV regions for single-cell RNA-seq data. Our 
previous analysis of clonal deletion regions in multiple myeloma revealed distinct patterns in the detection of 
known heterozygous germline single nucleotide polymorphisms (SNPs) identified by WES within regions 
affected by CNV in single cells. For each heterozygous germline SNP within a candidate CNV region, we infer 
which allele is affected by the CNV based on deviations away from the expected 1:1 allele ratios for 
heterozygous variants observed in bulk. As expected, for deletion regions, only non-deleted allele variants are 
observed within the deleted region (Fig. 2). Most of SNPs within the CNV neutral regions also exhibit highly 
biased allele ratios, but the direction of the bias varies between cells. This suggests that despite prevalent 
mono-allelic and biased expression, because the direction of bias is random within CNV neutral regions, we 
should be able to detect CNVs based on observations of persistent directional bias of expression. However, 
additional statistical methods are needed to quantify the probability of such observations, taking into 
consideration potential sequencing errors or RNA-processing.  

F i g u r e 2 . B i a s e d a l l e l e 
expression within and outside of 
CNV regions. Heterozygous 
germline SNPs (columns) for single 
cells (rows) inferred from single-cell 
RNA-seq is biased away from the 
expected allele fraction of 0.5 for 
heterozygous variants due to mono-
allelic expression within CNV 
neutral regions and due to clonal 
deletion status within deletion 
regions. In this example, all single 
cells exhibit a deletion in the known 
deletion region based on clonal 
deletion status inferred from bulk 
WES. 

Figure 1. scRNA-seq based SNV calls. a. Sensitivity and 
precision of GM12878 and K562 SNV calls compared to WES 
benchmarks, shown as a function of read coverage at SNV site. 
b. Clustering of artificially mixed GM12878 and K562 cells based 
on 100 randomly sampled scRNA-seq SNV calls (representative 
sample shown). 

 a. b.



2.1.2. Research design: Here, we propose integrating prior knowledge acquired from bulk WES along with 
single-cell RNA-seq to infer the presence of somatic mutations on a single-cell level. Specifically, from bulk 
WES, we will identify candidate regions of CNV using Control-FREEC27, identify putative somatic variants and 
heterozygous germline SNPs using MuTect28. We will also call for somatic SNVs from single-cell RNA-seq 
using GATK29 to identify additional rarer somatic SNVs that may be not be present at sufficient frequencies to 
be detectable in bulk. We will then use the following hierarchical Bayesian models to assess the posterior 
probability of the presence of candidate SNVs and CNVs in single cells. 

2.1.2.a. Bayesian approach to SNV inference. Inference of subclonal architecture relies on detection of 
subclonal variants such as SNVs. However, mono-allelic expression poses a major challenge to SNV 
detection, since a SNV may not be observed in the sequenced reads but can actually be present and simply 
not detected due to mono-allelic expression of the non-SNV carrying allele, thus hindering further analysis.  
 Here, we propose an alternative approach to 
overcome this uncertainty by first establishing that both 
alleles are indeed expressed in given cell, or, even more 
specifically, that the allele carrying the somatic variant is 
expressed, by looking at neighboring heterozygous SNPs. 
Specifically, we will take advantage of prevalent mono-allelic 
expression to derive probabilistic models of SNP (germline) 
and SNV (somatic) phasing, using them to increase certainty 
in the SNV presence/absence calls (Fig. 3). For example, if 
both alleles are observed for neighboring heterozygous 
SNPs, we will have greater certainty that mono-allelic 
expression is not a factors and that the SNV absence is a true 
negative. Our hierarchical Bayesian approach allows us to 
derive posterior probabilities on the presence of SNVs to 
quantify the uncertainty in our calls. Initial testing indicates 
that such approach is very effective at recovering phasing of 
SNVs with germline variants, allowing us to confidently infer 
SNV absence in approximately half of the ambiguous cases. 
 To model the rate of allele bias magnitude as a parameter in our model, we will look at heterozygous 
SNVs in known CNV neutral regions based on bulk WES. We expect to be able to observe both alleles are 
equal proportions unless there is mono-allelic expression or allele bias. We can then assess for the probability 
or rate of mono-allelic expression and allele bias as a function of gene length, gene expression, or other 
factors. Likewise, to determine the effective error rate due to reverse transcription, amplification, and 
sequencing, we will look at homozygous SNVs in known CNV neutral regions based on bulk WES. SNVs 
observed that are not of the expected allele can be attributed to error. We can then assess error as a function 
of coverage and other factors. 
 We will benchmark our method by calling SNVs in clonal mutant and normal samples. In this manner, 
samples with clonal mutations are used as true positive benchmarks while normal samples, which should 
harbor no mutations, are used as true negative benchmarks. 

2.1.2.b. Bayesian inference of CNV absence/presence from single-cell RNA-seq data. Detection of CNVs 
provide larger somatic changes that can be used for more robust inference of subclonal architecture. Previous 
efforts to infer CNVs on a single 
cell level from transcriptomic data 
have been l imited to whole 
chromosome and chromosome 
arm level changes12. Here, we 
propose an alternative approach to 
enable detection of smaller CNVs, 
taking advantage of heterozygous 
SNPs w i th in CNV reg ions . 
Intuitively, if a cell has the deletion, 
then we expect there to be only 
expression from the non-deleted 
allele. Which allele is the deleted 
a l l e l e c a n b e i n f e r r e d 
probabilistically using bulk WES 

Figure 4. Bayesian model for inferring CNV presence from 
scRNA-seq. A hierarchical Bayesian model is shown for 
inferring presence or absence of a candidate CNV in a given cell 
k (Sk) based on combination of alleles observed in the genes 
affected by the CNV (rik), normalized gene expression 
magnitude of the affected genes (gjk), expected monoallellic 
expression bias (bjk and djk), as well as the allele frequencies 
observed in the bulk exome data (lij and mij).

Figure 3. Bayesian model for inferring SNV 
presence from single-cell RNA-seq. A hierarchical 
Bayesian model is shown for inferring presence or 
absence of a candidate SNV i in a given cell j (aij), 
based on the inferred phasing with germline variants 
(si), and inferred allele expression bias (Mi and di).



data. If a cell does not have the deletion, a number of scenarios may occur. If there is no mono-allelic 
expression, then we expect to be able to observe both SNPs with approximately equal probability with some 
deviation expected due to biased allele expression. If we consistently observe only expression from the non--
deleted allele across SNPs within multiple genes, then the cell most likely has a deletion. However, if we 
observe only expression from the non-deleted allele in one gene and there is a high probability of mono-allelic 
expression, such patterns may also be explained by mono-allelic expression, increasing uncertainty in our 
deletion status inference. Similarly for amplifications, we would rely on allelic imbalance and higher expression 
from the amplified allele in comparable ratios across heterozygous SNVs within the amplification region.  
 Our hierarchical Bayesian approach allows us to incorporate the uncertainty in each detected allele in 
the single-cell RNA-seq data, in the bulk WES data, gene expression magnitude, mono-allelic expression, and 
sequencing error to assess the joint likelihood that the CNV is present in a given cell (Fig. 4). The proposed 
model thus infers the posterior probability on the presence/absence of a single CNV in a given cell. Again, we 
will integrate mono-allelic expression and effective error as done in the SNV model and benchmark our method 
by calling CNVs in clonal deletion and normal samples. 

2.1.3. Potential problems and alternative solutions. While the preliminary testing of the proposed 
approaches demonstrates their performance on well-defined cases such as cell lines and clonal samples, 
additional development will be necessary to accommodate more common experimental designs and improve 
overall performance. Specifically, the proposed design relies on the availability of the WES data, which is used 
to infer candidate CNVs, candidate SNVs, and heterozygous germline SNPs. We find that the exact 
boundaries of the CNVs can differ from those detected by the CNV prediction algorithms. Furthermore, some 
CNV boundaries vary among the clones. A boundary refinement step can be used to correct for such cases by 
focusing on the smallest shared region or trimming edges. An alternative HMM-like application of the current 
model will be evaluated in order to detect subclonal CNVs, but evaluating joint “emission” probability of both 
single-cell RNA-seq and WES data. Similarly, SNV analysis proposed currently avoids all SNVs that fall within 
CNVs detected in bulk. While this restriction can in principle be relaxed for the SNVs within amplified regions, 
additional provisions will have to be made to exclude SNVs found within common subclonal CNVs. 

2.2. Aim 2: Reconstructing subclonal architecture and dissecting subclonal evolution on the single-cell 
level. 

2.2.1. Preliminary data 

2.2.1.a. Active genetic evolutionary process is observed in CLL in response to treatment. Recent 
advancements in the understanding of the role of B cell receptor signaling in CLL pathogenesis have led to the 
development Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase, that has demonstrated prolonged 
responses in heavily pretreated and refractory patients. In a detailed study of 3 cases treated with ibrutinib at 
multiple time points both pre- and post-treatment, using bulk WES, my collaborators in the Wu group and I 
have identified distinct subclonal populations marked by mutually exclusive somatic mutations that change in 
population frequency and proportion at each time point22, suggesting an active evolutionary process (Fig. 5). 
An in-depth characterization of such samples, such as that offered by single-cell RNA-seq, will provide 
definitive information on the mechanisms underlying clonal dynamics of CLL and their relation to therapeutic 
resistance. 

Figure 5. Genetic evolution in 
CLL in response to ibrutinib 
treatment. Bulk samples were 
collected and sequenced for 
each patient at various time 
points pre and posttreatment as 
indicated by the black arrows. 
Analysis of cancer cell fractions 
by ABSOLUTE reveals different 
subclonal populations at each 
t ime po in t (TP1-TP5) . In 
particular, dominant subclonal 
populations in relapsing CLL 
cases can be observed as minor 
subclasses pretreatment (e.g. cl.
5 in Patient 1), suggesting an 
active, branched evolutionary 
p r o c e s s i n C L L c l o n a l 
expansion.  



2.2.2. Research design: We will build upon SNVs and CNVs identified in Aim 1 to reconstruct the sub clonal 
architecture of single cells within each sample and further infer the temporal ordering of somatic mutations. 
Intuitively, if cells within a tumor carry several shared somatic mutations, then they must be derived from the 
same single ancestral cell that also harbored these mutations. The probability that cells acquired the same 
mutations independently is unlikely. We can thus use these somatic mutations such as SNVs and CNVs to 
reconstruct the underlying subclonal architecture and identify subpopulations. However, such reconstruction 
must be done from within a probabilistic framework due to the inherent uncertainty associated with detection of 
each SNV and CNV. 
 Phylogenetic tree reconstruction from sequence data is a well-studied problem. A number of statistical 
likelihood-based and fully Bayesian approaches for phylogenetic tree reconstruction are already 
available30,31,32. We propose modifying one such approach, BEAST32, to incorporate uncertainty in the 
observed genotypes. We will benchmark these approaches as we have done previously in 2.1.1.c. We will 
apply this method to reconstruct the subclonal architectures for 3 CLL patients at multiple time points, pre and 
post chemo and ibrutinib treatment (Fig. 5). We anticipate that our single cell CNV detection method will 
recapitulate cancer cell fraction estimates and proportions previously estimated from bulk WES by 
ABSOLUTE15. 
 The reconstructed phylogenetic tree will also give us information on the order in which somatic 
mutations were acquired. To benchmark the accuracy of our inferred temporal orderings, we will compare our 
the ordering with the dynamics of subclonal architecture architecture reconstructed from bulk WES using 
methods such as PhyloWGS34 or ABSOLUTE15. Furthermore, for the 3 multi-time-point CLL samples, we will 
compare the inferred temporal ordering at each time point. 

2.2.4. Potential problems and alternative solutions. Classification of subclonal structure of the single-cell 
samples is critical for the proposed analysis. Our preliminary results indicate that high coverage achieved for 
many genes in single-cell RNA-seq measurements provides sufficient information to examine subclonal 
structure. In samples where such analysis will be limited by noise/coverage, we will restrict subclonal 
architecture reconstruction to the somatic variants detected in the bulk WES data alone and remove putative 
gremlin variants based on prior knowledge from bulk WES data.    

2.3. Transcriptomic characterization of genetic subclonal populations. 

2.3.1. Preliminary data:  

2.3.1a. Statistical model for single-cell RNA-seq data and Bayesian test identifies robustly differentially 
expressed genes. Single-cell transcriptomic measurements via single-cell RNA-seq is complicated by high 
levels of technical and biological noise. Losses during the reverse transcription step of library preparation along 

Figure 6. Bayesian analysis of differential 
expression. a. The error model of each single cell is 
used to estimate the expression magnitude posterior 
(red/blue curves) given the observed data. The 
approach estimates joint posterior distribution for the 
overall level with each cell type (black curves), and the 
expression fold difference between the cell types 
(middle plot). The example demonstrates expression 
differences of Sox2 between mES and MEF cells. b. 
Probabilistic weighting delays breakdown of common 
multivariate techniques. Ability of PCA and ICA to 
correctly separate two simulated cell types (3000 
genes, 150 differentially expressed) drops sharply as 
the frequency of dropout events increases (x axis: 
log10 RPM at which 50% of genes fail to be detected). 
Probabilistic weighting of observations using dropout 
probabilities predicted by the error models allow PCA 
and ICA to distinguish subpopulations at much higher 
levels of noise. c. Principal component analysis 
separating mES and MEF single cells. The sidebars 
show (density) of genes from different GO categories 
based on their loading in the corresponding principal 
component.  



with stochastic transcriptional bursting can lead to “drop-out” events, where a gene is observed at moderate or 
even high expression level in one cell but is not detected in another cell even though expression may be 
present but simply low17,18. To accommodate these abundant drop-out events along with the high variability of 
single-cell data, we model the measurement of each cell as a mixture of two probabilistic processes – one in 
which the transcript is amplified and detected at a level correlating with its abundance (modeled using a 
negative binomial distribution), and the other where a gene fails to amplify or is not detected for other reasons 
(modeled as a low-level Poisson background)17,18. We have further implemented a Bayesian method for such 
differential expression analysis that uses these error models to estimate the likelihood of a gene being 
expressed at any given average level in each of the single-cell subpopulations, as well as the likelihood of 
expression fold change between them (Fig. 6). We find that such an approach shows improved specificity/
sensitivity compared to other common RNA-seq analysis methods17. 

2.3.1b. Previous unbiased transcriptional characterization of CLL reveals transcriptional heterogeneity. 
Preliminary analysis of low-coverage single-cell RNA-seq data from 4 CLL tumor samples (CW14, CW106, 
CW84, CW236) illustrate the presence of intra-tumoral as well as inter-tumoral transcriptionally distinct sub-
sets, separating along functionally relevant criteria such as immune response pathways (Fig. 7). However, how 
these transcriptionally distinct subpopulations relate to genetically distinct subclones is not known.  

2.3.2. Research design: Having identified subclonal populations using somatic mutations in Aim 1 and Aim 2, 
we will assess the transcriptional profiles of each subclonal populations.  
 For each intra-patient subpopulation, we will apply single-cell differential expression analysis17 to 
identify differentially upregulated and downregulated genes associated with each subclone. We will use gene 
set enrichment analysis35 to determine if differentially expressed genes genes are enriched for particular 
pathways or gene sets.  
 Additionally, the ability to assay multiple time points in CLL patients (Fig. 5) provides a rare opportunity 
to observe expansion, contraction, and evolution of tumor subpopulations following therapeutic interventions. 
By comparing single-cell RNA-seq data from different time points we will identify: 1) Transcriptional features 
such as unregulated and down regulated genes and gene sets accompanying subclonal expansions (in 
relapse and metastatic samples) following treatment, 2) transcriptional features predictive of subclonal 
dynamics (expansion or contraction), and 3) persistent aspects of transcriptional heterogeneity not tied to the 
underlying genetic shifts in the subclonal architecture.  
 We will focus on assessing transcriptional heterogeneity of key regulatory pathways and downstream 
targets of signaling pathways previously identified by our collaborators in the Wu lab to be associated with CLL 
development, therapeutic response, and remission including RNA splicing, apoptosis, cell proliferation, cellular 
senescence, DNA damage repair, inflammation, Wnt and Notch signaling26.  In this manner,  we  will  examine  
the  potential  impact  of  presence  of genetic subpopulations  in  which  these  various  pathways  as  well  as  
the pathway  directed  targeted  by  the  administered  drug  are inhibited on the subsequent disease 
progression. Similarly,  we  will  test  for  potential  association  with  different  modes  of  B-cell  receptor  
signaling36,  subclonal activation of Wnt signaling37 and other pathways implicated in CLL-B-cell expansion of 
potential relevance to CLL progression. 
  
2.3.3. Potential problems and alternative solutions. The comparison of subclonal populations will focus on 
the major (high posterior probability) splits in the phylogeny. However, in the cases when such subpopulations 
will not be obvious, or when the subclone correspondence cannot be established between serial samples from 
the same individual, we will refer back to the WES data, using predictions from methods such as PhyloWGS34 
or ABSOLUTE15 to establish correspondence. We will also apply an unbiased approach to assessing 
transcriptional heterogeneity using the pathway and gene set over dispersion analysis method I previously 
developed. We will then assess whether particular somatic mutations are associated with the observed 
patterns of transcriptional heterogeneity. 

Figure 7. Transcriptional heterogeneity in a CLL 
sample. The heat map illustrates single cells as columns 
and consensus gene expression within pathway clusters as 
rows. Preliminary analysis of low-coverage scRNA-seq data 
from a CLL tumor illustrates presence of transcriptionally 
distinct sub-sets, separating along functionally relevant 
criteria such as immune response pathways.


