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Computational challenges and
opportunities in spatially resolved
transcriptomic data analysis
Lyla Atta 1,2,3 & Jean Fan 1,2,4✉

Spatially resolved transcriptomic data demand new computational analysis
methods to derive biological insights. Here, we comment on these associated
computational challenges as well as highlight the opportunities for standardized
benchmarking metrics and data-sharing infrastructure in spurring innovation
moving forward.

Advances in single-cell sequencing technologies have enabled high-throughput transcriptomic
profiling for individual cells, allowing the characterization and discovery of transcriptionally
distinct cell types and cell states. However, current protocols require dissociating cells from
tissues, thereby losing potentially valuable spatial information that may inform how cell types
and cell states are organized within tissues and how such organization may ultimately impact
phenotype and function1. To preserve such spatial information, advances in imaging technol-
ogies have enabled high-throughput in situ, targeted transcriptomic profiling of pre-selected
RNAs at molecular and single-cell resolution2. In addition, technologies based on spatially
resolved RNA capture followed by sequencing have enabled non-targeted, genome-wide
transcriptional profiling at the 10-100 µm pixel resolution3. Though the suitability of each spatial
transcriptomics technology in addressing a particular biological question will currently involve
balancing the need for experimental throughput versus spatial resolution, with current imaging-
based technologies generally offering higher spatial resolution but lower experimental
throughput and current sequencing-based technologies generally offering higher experimental
throughput but lower spatial resolution, all of these resulting large-scale spatially resolved
transcriptomic data demand new computational methods to take advantage of this new spatial
information to derive biological insights.

New methods for new data
Given the nascency of such high-throughput spatially resolved transcriptomic technologies, new
computational methods for analyzing the resulting data are still actively being developed.
Already, computational methods leveraging Gaussian processes4, generalized linear models5, and
spatial autocorrelation analysis6 have been developed to identify genes whose expression exhibits
significant spatial variability. Some of these methods can also classify different patterns of spatial
variation, such as linear or periodic gene expression4, as well as identify spatial features such as
gene expression hotspots7. Such identification of spatially variable genes can lend insight
into position-specific phenotypes as well as developmental and migration gradients. Spatial
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information can also augment the identification of putative
cell–cell communication networks. With single-cell sequencing
data, cell–cell communication inference has relied on identifying
coordinated expression of known ligand–receptor pairs8. Com-
putational methods that leverage the added spatial information
from spatially resolved transcriptomic data using graph con-
volutional neural networks9, optimal transport approaches10, and
spatial cross-correlation analysis6 can narrow down candidates to
ligand–receptor pairs that are spatially colocalized, potentially
indicative of autocrine or paracrine signaling. Furthermore, spa-
tially resolved transcriptomic data with co-registered imaging
data present additional sources of heterogeneity, such as mor-
phological variability, which can be used for clustering, as dif-
ferences in morphology can be a proxy for differences in cell
states or other functional phenotypes such as cell cycle position,
transformation, or invasiveness. Computational methods that
incorporate spatial and morphological information in addition to
gene expression information have been applied to further dissect
heterogeneity in single-cell populations to identify clusters of
single cells that are not only transcriptionally distinct but also
morphologically and spatially distinct11,12. Although these
aforementioned computational methods can be applied to both
single-cell resolution and multi-cell pixel-resolution spatially
resolved transcriptomic data, interpretation of the resulting
trends with multi-cell pixel-resolution data will need to take into
consideration potential confounding from pixels containing cells
of different cell types.

Analytical challenges and opportunities
Data from spatially resolved transcriptomic technologies pre-
sent unique analytical challenges and opportunities. For spa-
tially resolved transcriptomic data from in situ imaging-based
technologies, individual identified RNA molecules must be
aggregated into cells to achieve single-cell resolution tran-
scriptomic profiling. Therefore, reliable cell segmentation is
needed to fully dissect the heterogeneity of single cells in their
spatial context, as well as to probe their morphological features
and to characterize their intracellular variability. Several cell
segmentation pipelines exist and work well with images of cells
in culture or fluorescent labeled cells13,14. Integrating additional
information such as cellular transcriptional composition
and prior knowledge of cell type-specific gene expression can
further enhance segmentation performance, particularly with
crowded but transcriptionally distinct cells15,16. However, for
cells with more complex morphologies such as neurons, addi-
tional computational methods for reliable cell segmentation are
still needed. Beyond ensuring more accurate estimation of
single-cell gene counts, reliable segmentation opens the door to
additional downstream computational methods to incorporate
subcellular spatial information. For example, by accurately
accounting for the subcellular location of RNA counts, these
downstream methods enable the prediction of future cellular
transcriptional states by inferring RNA velocity in situ or the
characterization of the subcellular spatial heterogeneity of
RNAs and its functional impact17,18.

Likewise, spatially resolved transcriptomic data from sequencing-
based, pixel-resolution, spatially resolved RNA capture technologies
present a different set of unique analytical challenges. In particular
for technologies with larger pixel sizes, transcripts frommultiple cells
may be captured in each spatially resolved pixel. As such, each
resulting spatially resolved transcriptomic profile may reflect mul-
tiple cells of different cell types, thereby hindering the identification
of cell-type-specific spatial organizational patterns. To overcome this
challenge, several computational methods have been developed to

deconvolve cell-type mixtures within each multi-cellular spatially
resolved pixel, often by integrating the cell-type-specific tran-
scriptomic profiles derived from a suitable single-cell reference19–21

or by applying generative modeling approaches22. Although these
deconvolution approaches infer the proportional representation of
cell types within multi-cellular pixels, additional methods are needed
to further dissect the spatial organization of cell types and enable the
inference of sub-pixel spatial information.

Still, additional computational methods for analyzing spatially
resolved transcriptomic data are needed. Notably, although
computational methods have been developed to identify and
characterize spatial gene expression patterns, we find that addi-
tional methods to systematically characterize and statistically
evaluate how such patterns relate to anatomical features of tissues
such as blood vessels or organ borders are still needed to
understand the relationship between structure and phenotype.
Furthermore, current computational methods generally limit
spatial analysis to individual tissue sections or multiple con-
tiguous sections from the same sample. To analyze samples col-
lected from different individuals, time points, or perturbations,
we anticipate that additional computational methods for aligning
to a common coordinate system will be needed to compare,
contrast, and characterize differences in spatial gene expression
patterns and cellular organization23.

Laying a foundation for the future
As these spatially resolved transcriptomic technologies become
more widely adopted, we anticipate that beyond the development
of new computational methods for spatially informed data analysis,
such computational methods must be implemented and made
accessible as robust and usable software. This is needed to ensure
that users can apply these technologies and analyze the resulting
data effectively and efficiently. We believe the software developed
to preprocess and analyze spatially resolved transcriptomic data
should therefore adhere to best practices in open-source software
development, such as providing adequate documentation of soft-
ware functionality and maintaining responsive issue tracking.
Further, support mechanisms need to be made available to pro-
mote and incentivize such adherence. Adherence to such best
practices will be especially critical to ensure that these technologies
and tools are accessible to researchers with more limited compu-
tational expertise. Moreover, as these spatially resolved tran-
scriptomic technologies and protocols are further developed to
enable data collection from larger tissue sections with more genes
and cells across more samples, analytical algorithms and software
implementations that are scalable with respect to runtime and
memory will also be critical to ensure that these technologies and
tools are accessible to researchers with more limited computational
resources.

As current spatially resolved transcriptomic technologies con-
tinue to mature, we believe standardized metrics and benchmarks
will need to be created, to enable comparisons across these
technologies, in particular with regards to detection sensitivity,
specificity, and capture efficiency. Such standardized metrics and
benchmarks will be important for understanding which tech-
nologies may be better suited for specific biological questions
such as those that demand detection of lowly expressed genes or
single-nucleotide variations. Such standardized metrics and
benchmarks will also facilitate the development of computational
methods for harmonized analysis of data across multiple tech-
nologies. In particular for spatially resolved transcriptomic data
from in situ imaging-based technologies, standardized metrics for
reporting confidence in spot calling, gene identification, and
gene-to-cell assignment remain to be established. We anticipate
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that such specific standardized metrics will be useful in mitigating
error propagation to downstream analyses that may lead to
incorrect biological interpretations. For example, errors in spot
calling, gene identification, and cell segmentation may lead to
inaccurate cellular gene expression counts that result in the
misidentification of seemingly new, transcriptionally distinct cell
types that are the result of propagated technical errors. One

challenge towards establishing a set of standardized metrics for
spatially resolved transcriptomic data from in situ imaging-based
technologies is related to the current dearth of uniform pre-
processing pipelines. Many of the current spatially resolved
transcriptomic in situ imaging-based protocols rely on in-house
image preprocessing pipelines. Although uniform preprocessing
pipelines are being established24, further efforts are needed to

Fig. 1 High-throughput spatially resolved transcriptomics data acquisition and analysis. A Imaging-based, targeted, in situ transcriptomic profiling
at molecular and single-cell resolution or B non-targeted, RNA capture, and sequencing at pixel resolution is used to measure RNA in tissues in a spatially
resolved manner. Computational methods can be used to C identify genes with significantly spatially variable expression patterns, D deconvolve
multi-cellular pixel-resolution data to determine pixel cell-type composition, E combine gene expression, position, and morphological information to cluster
cell populations, or F identify spatially informed putative cell–cell communication networks.
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encourage adoption by enhancing their ease of use, offering
comparable features to existing in-house pipelines, while main-
taining flexibility across available technological platforms, as well
as demonstrating robustness and reproducibility across use cases.

In addition, we find that an accessible and centralized
infrastructure is currently still needed for sharing spatially
resolved transcriptomic data, in particular from in situ imaging-
based technologies. Such an accessible and centralized infra-
structure already exists for RNA-sequencing data25. Further, it
makes readily accessible not only the processed gene counts but
also raw sequences, as well as metadata on the machines and
organisms used to generate the data and metrics regarding the
quality of the data such as base call quality scores. Establishing a
similar infrastructure for spatially resolved transcriptomic data
from in situ imaging-based technologies may prove to be more
complex given the range of protocols and modalities that exist
and the sheer size of the raw imaging data as well. However,
establishing such an accessible data-sharing infrastructure will
be especially important for accelerating the development of
computational methods to analyze such spatially resolved
transcriptomic data, as it ensures the availability of a wide range
of data for method testing and enables the characterization of
method performance with respect to data quality. We envision
that additional discussion and collaboration from the commu-
nity will be needed to establish the form of processed data and
range of standardized metrics most useful for all invested par-
ties, from those interested in developing new computational
methods to those interested in further enhancing the technol-
ogies, and those interested in probing deeper into datasets for
biological insights.

In conclusion, spatially resolved transcriptomic technologies
offer an exciting new way of probing the intricate spatial
mechanisms at play within tissue ecosystems. Computational
methods are needed to enable the characterization of tissue
heterogeneity using the high informational content data obtained
from such spatially resolved transcriptomic technologies. Still,
there remains a need for targeted perturbation, experimental
validation, and investigation of generalizability to validate the
insights gained from applying these computational methods. For
example, although computational methods have been developed
to integrate spatial and morphological information in single-cell
clustering, further validation is needed to understand if new cell
clusters identified through such integrative approaches represent
meaningful functional heterogeneity. Furthermore, investigating
the extent to which spatial and morphological characteristics of
cells are independent of their gene expression can lend insights
into other cell intrinsic and cell extrinsic factors that influence
cell phenotype. Likewise, intracellular spatial heterogeneity and
its functional consequences remain to be characterized. Ulti-
mately, computational methods for analyzing spatially resolved
transcriptomic data offer the potential to identify and char-
acterize the heterogeneity of cells within their spatial contexts
and contribute to important fundamental biological insights
regarding how tissues are organized in both the healthy and
diseased settings.
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