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Recent technological advances have enabled spatially resolved measurements of expression profiles for hundreds to thou-

sands of genes in fixed tissues at single-cell resolution. However, scalable computational analysis methods able to take into

consideration the inherent 3D spatial organization of cell types and nonuniform cellular densities within tissues are still

lacking. To address this, we developed MERINGUE, a computational framework based on spatial autocorrelation and

cross-correlation analysis to identify genes with spatially heterogeneous expression patterns, infer putative cell–cell commu-

nication, and perform spatially informed cell clustering in 2D and 3D in a density-agnostic manner using spatially resolved

transcriptomic data.We appliedMERINGUE to a variety of spatially resolved transcriptomic data sets includingmultiplexed

error-robust fluorescence in situ hybridization (MERFISH), spatial transcriptomics, Slide-seq, and aligned in situ hybridiza-

tion (ISH) data. We anticipate that such statistical analysis of spatially resolved transcriptomic data will facilitate our under-

standing of the interplay between cell state and spatial organization in tissue development and disease.

[Supplemental material is available for this article.]

Characterization of the spatial context of cells and their cellular
states is essential to understanding the connection between tissue
organization and function, particularly in complex organs such as
the mammalian brain. Furthermore, spatial context plays an im-
portant role in development and organ formation in multicellular
organisms, as well as in aberrant processes such as cancer (Crosetto
et al. 2015). Although advances in single-cell sequencing technol-
ogies can be used to discover transcriptionally distinct subpopula-
tions of cells in an unbiased manner, current protocols require
dissociating cells from tissue, thereby losing valuable spatial con-
text (Crosetto et al. 2015). Thus, how these subpopulations of cells
are organized in space and how they may interact with each other
remains an open question in many systems.

To preserve informative spatial context, recent advances in
imaging-based approaches have enabled in situ spatially resolved
transcriptomic profiling with single-cell resolution (Zhuang
2021). In addition, approaches based on spatially resolved RNA
capture followed by sequencing, such as spatial transcriptomics
and Slide-seq, provide spatially resolved untargeted transcriptomic
profiling at the pixel level, with pixel size of 10–100 µm (Larsson
et al. 2021). Such high throughput data generation, both in terms
of the number of genes and number of cells assayed, demands scal-
able computational methods that take advantage of this new spa-
tial dimension to efficiently identify statistically significant spatial
patterns and relationships. In addition, as these methods are ap-

plied to increasingly complex tissues, statistical analyses must be
able to accommodate the nonuniform cell density induced by bi-
ological factors, such as the presence ofmultiple, often spatially or-
ganized, cell types inherent to tissues, as well as technical factors,
such as distortions from tissue sectioning.

Three statistical methods, SpatialDE, Trendsceek, and SPARK
have previously been developed to identify spatial gene expression
heterogeneity, defined as an uneven, aggregated, or patterned spa-
tial distribution of gene expression magnitudes (Edsgärd et al.
2018; Svensson et al. 2018; Sun et al. 2020). Briefly, SpatialDE iden-
tifies spatial gene expression heterogeneity by decomposing a
gene’s expression variance into a spatial and a nonspatial compo-
nent using a spatial variance term that incorporates the pairwise
distances between cells. Trendsceek characterizes spatial gene ex-
pression heterogeneity by testing a gene’s expression for depen-
dence with the pairwise distances between cells. SPARK identifies
spatial gene expression heterogeneity that best fits the observed
gene expression trends using multiple linear spatial models based
on different Gaussian and periodic kernel functions that incorpo-
rate distances between cells. Thus, each method directly incorpo-
rates information regarding cell distances, which could present a
challenge for analyses within tissues where cells are distributed
with nonuniform densities. For example, where local cell density
is higher and the distance between cells are smaller, randomly
varying gene expression may give rise to apparent spatial aggrega-
tion owing to cellular aggregation (Supplemental Fig. S1A).
Likewise, spatial variation in cellular density could also potentially
mask spatial variation in gene expression (Supplemental Fig. S1B).7Present address: Department of Biomedical Engineering,
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It is, however, important to identify vari-
ations in gene expression magnitudes
across cells that do not arise from varia-
tions in cellular density. Alternative
approaches such as SpaOTsc can accom-
modate nonuniform cellular densities if
provided with geodesic distances (Cang
and Nie 2020). Briefly, using such densi-
ty-agnostic geodesic distances relating
cells in space, SpaOTsc uses optimal
transport to estimatehowmuch informa-
tion about each gene’s expressionmagni-
tude can be provided by another gene’s
expression magnitude to identify groups
of genes with similar spatial patterning.
However, this approach does not pro-
vide a statistical framework to distinguish
between significantly spatially hetero-
geneous genes versus nonsignificant
or nonspatially heterogeneous genes.
Furthermore, cells in tissues inherently
exist in a three-dimensional context, yet
computational approaches capable of
taking into consideration z-axis informa-
tion, often at differing length scales such
as multiple noncontiguous tissue sec-
tions, have yet to be shown. Here, we de-
veloped MERINGUE, a density-agnostic
method for identifying spatial gene
expression heterogeneity using spatial
autocorrelation and cross-correlation
analyses. Using a variety of spatially re-
solved transcriptomic data sets, we show
thatMERINGUE is able to identifybiolog-
ically relevant spatial gene expression
patterns in both 2D and 3D in a manner
that is independent of cell density.

Results

Overview of MERINGUE

Given a set of spatial positions such as
those corresponding to single cells,
MERINGUE first represents these cells as
neighborhoods using Voronoi tessella-
tion (Fig. 1A). In Voronoi tessellation, planes are partitioned into
neighborhoods where a neighborhood for a cell consists of all
points closer to that cell than any other (Okabe et al. 1992). Cells
are then considered adjacent if their neighborhoods share an
edge. For biological interpretability, we further require adjacent cells
to be within a certain spatial distance in space to accommodate re-
alistic length scales of cellular interactions. This neighborhood rep-
resentation of cells accommodates varying neighborhood sizes and
distances between cells and thus can characterize cell types and
tissueswithnonuniformdensities.We also find that suchneighbor-
hood adjacency relationships to be more stable than k-nearest-
neighbor or k-mutual-nearest-neighbor relationships, because
such relationships require k to be specified beforehand and a single
k valuemay not be appropriate for all densities and regions within a
spatially resolved data set (Supplemental Fig. S2A). MERINGUE en-
codes these adjacency relationshipsusing a binary adjacencyweight

matrixWwith a weight of 1 if two data sets are adjacent and 0 oth-
erwise (Fig. 1A). Such adjacency relationships are not restricted to
2D and thus can accommodate 3D information, such as from imag-
ing ofmultiple slices of the same tissue or 3D volumetric imaging of
a tissue block, if available (Lee et al. 2015; Wang et al. 2018).

Next, to identify genes with spatially heterogeneous expres-
sion, given a matrix of normalized gene expression magnitudes
for the same set of spatially resolved cells, MERINGUE uses this ad-
jacencyweightmatrixW in calculatingMoran’s I, a globalmeasure
of spatial autocorrelation popular in geospatial analysis, for each
gene’s expression magnitude (x) across the population of N cells
(Moran 1950):

Moran′s I = N∑N
i
∑N

j Wij

∑N
i
∑N

j Wij(xi − �x)(xj − �x)∑N
i (xi − �x)2

.
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Figure 1. Overview of MERINGUE. (A) MERINGUE encodes spatial relationships among spatially re-
solved data sets, such as cells, using a binary adjacency weight matrix W. (Left) Two cells are considered
adjacent if their neighborhoods inferred from Voronoi tessellation share an edge. (Right) The binary ad-
jacency weight matrix W is visualized by plotting all cells in space with a red line connecting cells if cells
are adjacent and no line otherwise. (B) MERINGUE identifies genes with spatially heterogeneous expres-
sion usingW to compute and evaluate the significance of a spatial autocorrelation index I for each gene.
When a gene’s expression magnitude between spatially adjacent cells are highly correlated, Iwill be pos-
itive, indicative of spatial heterogeneity. Three simulated gene expression profiles are provided to illus-
trate examples of high and low spatial heterogeneity with red indicating high expression and blue
indicating low expression. (C) MERINGUE groups identified spatially heterogeneous genes into primary
spatial patterns by computing a spatial cross-correlation index for every gene pair. (Top) The resulting
spatial cross-correlation matrix is used to construct a hierarchical dendrogram. (Bottom) Dynamic tree
cutting is applied to partition genes into patterns. Groups of genes are Z-scored and averaged, with emp-
ty regions filled in using Akima interpolation to visualize final patterns. (D) MERINGUE identifies gene ex-
pression patterns that may be indicative of putative cell–cell communication using an inter-cell-type
weight matrixWict between two cell types, which can then be used to compute an inter-cell-type spatial
cross-correlation index iSCI between two genes (Top left). Two cell types, A and B, are shown as green
triangles and orange squares, respectively.Wict is visualized with a red line for cells of cell type A spatially
adjacent to cells of cell type B. (Top right) Cell type–A cells express gene A at variable levels, whereas cell
type–B cells express gene B at variable levels, with red indicating high expression and blue indicating low
expression. (Bottom left) Cell type–A cells do not express gene B and cell type–B cells do not express gene
A, resulting in a generally negative Pearson’s correlation (R) between the two genes. (Bottom right)
However, expression of gene A in cells of cell type A is highly correlated with the expression of gene B
in spatially adjacent cells of cell type B, resulting in a positive iSCI. The significance of this iSCI is assessed
by permutation.
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When a gene’s expression magnitude (x)
between spatially adjacent cells (Wij=1)
are positively correlated, Moran’s I will
be positive (Fig. 1B), indicative of spatial
gene expression heterogeneity. Moran’s
I has a closed form, allowing P-values
to be derived without reliance on
computationally intensive permutations
(Supplemental Fig. S2B; Moran 1950).

To further characterize the scale of
significant spatial gene expression het-
erogeneity, using the samematrix of nor-
malized gene expressionmagnitudes and
adjacency weight matrix W, MERINGUE
calculates a local indicator of spatial asso-
ciation (LISA) for each gene (Anselin
1995):

LISAi = N
(xi − �x)

∑N
j Wij(xj − �x)∑N

i (xi − �x)2
.

When a gene’s expression values (x)
in a given cell (i) is positively correlated
with that cell’s spatially adjacent neigh-
bors, the cell’s LISA for the given gene
will be highly positive. Again, LISA has a
closed form, allowing P-values to be
derived quickly. As such, MERINGUE de-
fines the percent of cells with statistically
significant LISAs as the percent of cells
driving a spatially heterogeneous gene
expression pattern. This use of LISA
guards against the identification of spa-
tially heterogeneous genes driven by
small hotspots or outliers. Simulations
suggest that false positives may be effec-
tively eliminated by restricting to spatial heterogeneity driven by
>5% of cells (Supplemental Fig. S2C).

Finally, to summarize genes into primary spatial patterns,
MERINGUE calculates a spatial cross-correlation index between
all pairs of genes identified with significant spatially heteroge-
neous expression driven by a sufficient percentage of cells:

SCI = N

2
∑N

i
∑N

j Wij

∑N
i
∑N

j Wij(xi − �x)(yj − �y)���������������∑N
i (xi − �x)2

√ ���������������∑N
j (yj − �y)2

√ .

When one gene’s expression magnitude (x) in a given cell (i)
is positively correlated with another gene’s expression magnitude
(y) in the cell’s spatially adjacent neighbors ( j), the SCI for this
gene pair will be positive. MERINGUE computes this spatial
cross-correlation index for all gene pairs to derive a spatial cross-
correlation matrix that is then used for hierarchical clustering
and dynamic tree cutting to group these genes into primary spatial
patterns (Fig. 1C; Langfelder et al. 2008).

In addition, MERINGUE further builds on this spatial cross-
correlation index to identify spatially cross-correlated gene expres-
sion patterns that may be indicative of cell–cell communication.
In particular, communicating cell types may express higher levels
of particular ligand genes while being spatially adjacent to cells
that express higher levels of corresponding receptor genes or vice
versa. Thus, to identify such gene expression patterns that may
be indicative of putative cell–cell communication, MERINGUE
constructs an adjacency weight matrixW to only include adjacen-

cy relationships between cell types and calculates the spatial cross-
correlation statistics for known receptor and ligand genes
(Ramilowski et al. 2015). In this manner, when a receptor gene’s
expressionmagnitude (x) in a given cell (i) of cell type A is positive-
ly correlatedwith the corresponding ligand gene’s expressionmag-
nitude (y) in cells of cell type B among the cell’s spatially adjacent
neighbors ( j), the inter-cell-type SCI for this cell type pair will be
highly positive. Statistical significance can then be assessed by per-
mutation testing (Fig. 1D).

MERINGUE identifies genes with spatially heterogeneous

expression patterns and is robust to changes in cellular densities

As a proof of principle, we first applied MERINGUE to spatial tran-
scriptomics (ST) data of themousemain olfactory bulb (MOB) and
Slide-seq data of the mouse cerebellum (Ståhl et al. 2016;
Rodriques et al. 2019). Briefly, for ST and Slide-seq, RNAs from tis-
sue sections are captured onto an array of DNA barcoded spots or a
monolayer of DNA barcoded beads, respectively. By resolving the
DNA barcodes, both approaches enable matching of detected
RNA abundances with their original spatially resolved spots or
beads, resulting in RNA sequencingmeasurements with uniformly
gridded 2D positional information. To validateMERINGUE, we ex-
pected that identified spatially heterogeneous genes in the MOB
should mark transcriptionally distinct and spatially organized
cell layers or combinations of cell layers (Fig. 2A; Supplemental
Fig. S3A). Indeed, when we applied MERINGUE to analyze 7365

E

B

A

C

D

Figure 2. Application of MERINGUE to 2D spatial transcriptomic data of the main olfactory bulb
(MOB) and 3D-aligned ISH data of the Drosophila melanogaster embryo. (A) Spatially unaware single-
cell clustering analysis identifies five transcriptionally distinct clusters corresponding to various known
cell layers in the MOB. Spatial spots are colored based on their inferred cell layer annotation. (B)
MERINGUE identifies genes with significantly spatially heterogeneous expression in the MOB. Select
genes are shown. (C) MERINGUE groups genes with significantly spatially heterogenous expression in
theMOB into five primary spatial patterns. Select patterns are shown. (D) MERINGUE’s adjacency weight
matrix visualized for aligned 3D in situ hybridization data of the D. melanogaster embryo. Each point is an
aligned cell. Cells are connected with a red line if they are inferred to be adjacent. A top view and rotated
side view are shown. (E) MERINGUE groups genes into spatial patterns in the D. melanogaster embryo.
Representative genes from select identified patterns are shown.
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genes among 260 spots, of the 834 identified as significantly spa-
tially heterogeneous genes (adjusted P-value <0.05) driven by >5%
of spots (Fig. 2B; Supplemental Fig. S3B; Supplemental Table S1),
90% (754/834) overlapped with genes that are significantly differ-
entially expressed genes across cell layers (adjusted P-value <0.05)
as identified from ANOVA testing. Furthermore, these 834 spa-
tially heterogeneous genes can be further partitioned into five pri-
mary spatial patterns that correspond to cell layers and
combinations of cell layers as expected (Fig. 2C; Supplemental
Fig. S3C). One well-characterized aspect of spatial organization
in the MOB involves the convergence of axonal projections from
olfactory receptor neurons expressing a given olfactory receptor
(Olfr) into glomerular neuropils at fixed locations in the glomeru-
lar cell layer of the olfactory bulb (Ressler et al. 1994; Vassar et al.
1994; Mombaerts et al. 1996). Therefore, as an additional valida-
tion, we evaluated whether Olfr genes were spatially hetero-
geneous in a pattern that corresponds to the glomerular and
surrounding cell layers. Although individual Olfr genes are very
lowly expressed such that detection was generally limited to
only a few copies in a few spots (Supplemental Fig. S3D), rendering
assessment of spatial heterogeneity for individualOlfr genes infea-
sible, by aggregating the expression of all detected Olfr genes, we
validate that MERINGUE was able to identify significant spatial
heterogeneity (P-value=0.0000283). The spatial expression pat-
tern further corresponded approximately to the glomerular and
surrounding cell layer as expected (Supplemental Fig. S3E). For
Slide-seq data of the mouse cerebellum, we applied MERINGUE
to analyze 9762 genes among 1589 beads previously annotated
to correspond to the Purkinje layer (Supplemental Fig. S4A). We
validate that Aldoc (also known as zebrin II) is identified as among
the most significantly spatially heterogeneous genes (adjusted P-
value <0.05, >5% beads) (Supplemental Table S2), consistent
with observations from the original publications (Rodriques
et al. 2019).

We next comparedMERINGUE to previously published com-
putationalmethods for analyzing spatially resolved transcriptomic
data, SpatialDE and SPARK (Svensson et al. 2018; Sun et al. 2020).
We applied each method to analyze 7365 genes among 260 spots
in the MOB to identify spatially heterogeneous genes
(Supplemental Methods). We found the resulting significance of
spatial heterogeneity in terms of −log10(adjusted P-value) to be
highly correlated across genes between all tested computational
methods (R =0.914 between MERINGUE and SpatialDE, R=
0.898 between MERINGUE and SPARK) (Supplemental Fig. S5A,
B). The resulting set of significantly spatially heterogeneous genes
identified by each tested computational method using a common
significance threshold (adjusted P-value <0.05) were also highly
overlapping (Supplemental Fig. S5C). We further evaluated the
computational efficiency of each method in terms of runtime
and memory usage as a function of the number of genes and the
number of cells in the data set (Supplemental Methods).We found
that MERINGUE achieves improved computational efficiency
compared to previously published computational methods
(Supplemental Fig. S5D,E). Thus, MERINGUE is capable of identi-
fying spatially heterogeneous genes consistent with previously
published approaches in a scalable manner.

We developed MERINGUE to accommodate the nonuniform
cellular densities inherent to tissues. Thus, we reasoned that
changes in cellular densities should not substantially impact
MERINGUE’s ability to identify spatially heterogeneous genes.
To assess MERINGUE’s robustness to spatial variations in cellular
densities, we artificially induced nonuniformity in the spatial dis-

tribution of ST spots by distorting their positional coordinates
(Supplemental Methods; Supplemental Fig. S6A). Owing to its
use of a distance-agnostic binary weight matrix, MERINGUE’s re-
sulting significance of spatial heterogeneity across genes was high-
ly correlated between the uniform and nonuniform case as
expected (Spearman’s ρ=0.862) (Supplemental Fig. S6B).
Likewise, although MERINGUE was able to identify 834 signifi-
cantly spatially heterogeneous genes (adjusted P-value< 0.05,
>5% of spots) in the uniform density case, 544 (65%) of these
genes were recovered in the nonuniform density case with the
same adjusted P-value and spot percentage thresholds. The dis-
crepancies between the uniform and nonuniform cases can be
largely attributed to changes in the binary weight matrix
(Supplemental Fig. S6C). Because SpatialDE and SPARK incorpo-
rate Euclidean distances between cells in their evaluation of spatial
patterns, we reasoned that spatial variations in cellular density
would impact their ability to identify spatially heterogeneous
genes. We thus applied the same uniform and artificially induced
nonuniform case comparison. As expected, the resulting signifi-
cance of spatial heterogeneity across genes was less well correlated
between the uniform and nonuniform density case for both
SpatialDE (Spearman’s ρ=0.427) and SPARK (Spearman’s ρ=
0.418) (Supplemental Fig. S6D). Likewise, although SpatialDE
was able to identify 360 significantly (adjusted P-value<0.05) spa-
tially heterogeneous genes in the uniform density case, only 56
(16%) of these genes were recovered in the nonuniform case
with the same adjusted P-value threshold. Similarly, SPARK was
able to identify 664 significantly (adjusted combined P-value<
0.05) spatially heterogeneous genes in the uniform case, but
only 66 (10%) of these genes were recovered in the nonuniform
case with the same adjusted P-value threshold.

MERINGUE integrates 3D and multilayer tissue information

Although spatially resolved transcriptomics measurements gener-
ally provide positional information in the imaging (x–y) plane,
z-direction information can be obtained through optically scan-
ning through imaging planes or sequential tissue sections. To
show integration of z-direction information, we first applied
MERINGUE to 3D in situ hybridization (ISH) data, aligned across
multiple stage 6 Drosophila melanogaster embryos for 84 selected
marker genes (Fig. 2D; Supplemental Methods; Fowlkes et al.
2008; Karaiskos et al. 2017). The role of spatial patterning in shap-
ing cellular identities has been well established in the D. mela-
nogaster embryo and as such, the 84 marker genes were previously
chosen for their known spatial patterning. Indeed, we validated
that all 84 genes are identified by MERINGUE as significantly spa-
tially heterogeneous (adjusted P-value<0.05, >5%spots) as expect-
ed. We further validated that these genes could be grouped by
MERINGUE into 14 primary spatial patterns that correspond to
known regionally confined developmental fates and layers of the
segmentation gene network (Fig. 2E; Supplemental Fig. S7;
Supplemental Table S3; Ingham1988;Karaiskos et al. 2017). For ex-
ample, pattern 2 corresponds to themesoderm and includesmeso-
dermdeterminant gene twist (twi), whereas pattern 13 corresponds
to the thoracic segments and includes known gap geneKruppel (Kr)
(Preiss et al. 1985; Leptin 1991). Similarly, patterns 9 and 12 corre-
spond to two spatially alternating striped patterns that include
known pair-rule genes even skipped (eve) and odd skipped (odd), re-
spectively (Macdonald et al. 1986; Coulter et al. 1990).

Alternatively, z-information may be derived through
serial sections. We thus next applied MERINGUE to spatial
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transcriptomic data of four consecutive histological sections of a
human breast cancer biopsy (Supplemental Methods; Ståhl et al.
2016). Analyzing each section independently, we identified 414
genes that show significant spatial variability (adjusted P-value<
0.05, >5% spots) in at least one section out of 6214 genes tested
(Supplemental Table S4). Because the distance between cells across
serial sections are greater than the distances between cells within
sections, we sought to identify spatial patterns consistent across
layers by testing for spatial correlation between mutual nearest
neighbors in space across sections (Supplemental Fig. S8A). Such
a multilayer integrated approach confirmed 242 significantly spa-
tially heterogeneous genes as being consistent across sections
(Supplemental Table S4; Supplemental Fig. S8B). Of the remaining
172 genes that were identified as significantly spatially heteroge-
neous in individual sections but not across sections, visual inspec-
tion showed that although these genes show spatial variability
within sections, therewasminimal correspondence across sections
(Supplemental Fig. S8C). Such transcriptional patterns may be in-
dicative of layer-specific subpopulations or transcriptional fea-
tures. For structurally stereotypic tissues, consistency across
tissue sections may be used as an additional criterion for identify-
ing functionally relevant spatial patterns. Thus, MERINGUE is ca-
pable of accommodating 3D information to identify spatially
heterogeneous genes in 3D as well as genes with spatial expression
patterns consistent across serial sections.

MERINGUE identifies spatial patterns in the mouse hypothalamic

preoptic region using spatially resolved single-cell gene expression

data by MERFISH

Particularly in complex organs such as the mammalian brain, the
ability to identify and interrogate the spatial organization of cell
types may provide additional insights into potential functional
roles underlying the spatial organization of neuronal populations
(y Cajal 1911; Amaral and Witter 1989; Arber 2012). We applied
MERINGUE to analyze spatially resolved single-cell transcriptomic
data of the hypothalamic preoptic region obtained using multi-
plexed error-robust fluorescence in situ hybridization (MERFISH)
(Moffitt et al. 2018). Briefly, MERFISH allows individual RNAmol-
ecules in cells to be imaged and identified by using a combinatorial
labeling strategy that encodes RNA species with error-robust bar-
codes that can be read out bit-by-bit using sequential rounds of sin-
gle-molecule fluorescence in situ hybridization (Chen et al. 2015).
MERFISH has enabled simultaneous detection and identification
of thousands of targeted RNA species, which can then be segment-
ed into cells to provide spatially resolved single-cell transcriptome
measurements (Chen et al. 2015; Xia et al. 2019). Moffitt et al.
(2018) previously used a 155 gene panel to characterize the hypo-
thalamic preoptic region (1.8 ×1.8 ×0.6 mm, Bregma +0.26 to
−0.34) in adult mice to identify 31 excitatory and 39 inhibitory
neuronal subtypes in addition to non-neuronal cell types using
graph-based community-detection clustering analysis that relies
solely on the gene expression of profiles of cells without consider-
ing the spatial information.

We applied MERINGUE to analyze the 155 genes along with
five blank control barcodes, DAPI, and poly(dT) signals as negative
controls within each cell type and subtype to identify additional
aspects of spatial heterogeneity. Applying a rigorous approach to
identify genes with spatially heterogeneous expression patterns
that are consistent across tissue layers and reproducible across an-
imals (Supplemental Methods), we were able to identify at least
one such spatially heterogeneous gene in 34 of 83 cell types and

subtypes analyzed (Fig. 3A; Supplemental Fig. S9; Supplemental
Table S5). None of the blank control barcodes, DAPI, or poly(dT)
signals were identified as consistently spatially variable.
MERINGUE further identified significant spatial gene expression
heterogeneity within neuronal subtypes in both the anterior and
posterior of the preoptic region. Likewise, spatial gene expression
heterogeneity was identified in both inhibitory and excitatory
neuronal subtypes. These aspects of spatial heterogeneity were
consistent with previous published spatially unaware variance
and principal components-based analyses and visual inspection
(Moffitt et al. 2018).

By providing a quantitative framework to systematically iden-
tify and evaluate the statistical significance of spatial gene expres-
sion heterogeneity, MERINGUE identified that cells of inhibitory
subtype I-6 in the anterior of the preoptic region can be partitioned
into a superior and inferior spatial lobemarked by higher and low-
er expression of Sema3c and Necab1, respectively (Fig. 3A). These
patterns are consistent across adjacent tissue sections. Likewise,
cells of inhibitory subtype I-11 in the posterior preoptic region
can be partitioned into a medial and lateral spatial group marked
by lower expression of Gabra1, higher expression of Nos1, and
higher expression ofGabra1 lower expression ofNos1, respectively,
and this partition is consistent across adjacent tissue sections (Fig.
3B). Alternatively,Gad1, whichmarks inhibitory cells, is highly ex-
pressed among all cells and does not show significant spatial het-
erogeneity as expected. Inhibitory subtype I-11 was previously
identified to be specifically activated by male mating based on
the expression of immediate early gene Fos (Moffitt et al. 2018).
Although inhibitory subtype I-11 showed significant spatial het-
erogeneity in both male and female animals (Fig. 3C), we found
the fraction of Nos1+ I-11 neurons to be significantly higher in
males than females (Student’s t-test P-value= 0.03656) (Fig. 3D).
Esr1 and Irs4 were also identified to be significantly spatially het-
erogeneous in I-11 neurons in a pattern similar to Nos1
(Supplemental Fig. S9). Esr1 and Irs4 have been previously shown
to display sex-differences in their expression (Xu et al. 2012;
Moffitt et al. 2018). These observations suggest the potential pres-
ence of a finer Nos1+ I-11 neuronal subpopulation that is sexually
dimorphic. Furthermore, MERINGUE generally identified concor-
dant spatial gene expression heterogeneity in both male and fe-
male animals (Supplemental Fig. S10), but tachykinin receptor 1
(Tacr1, also known as neurokinin receptor 1) was identified as sig-
nificantly spatially heterogeneous in excitatory subtype E-8 neu-
rons only in male and not female mice (Fig. 3E). No other tested
neuronal subtypewas identified to show such consistently statisti-
cally significant sexually dimorphic spatial heterogeneity.
Previously, E-8 neurons were identified to be activated in male
mice during mating based on expression of Fos (Moffitt et al.
2018). However, E-8 neurons did not show a significant difference
in terms of their proportion to all cells between female and male
mice (Student’s t-test P-value =0.268). Likewise, we confirmed
that the fraction of cells expressing Tacr1 in E-8 neurons is not sig-
nificantly different betweenmale and femalemice (Student’s t-test
P-value=0.429). However, whenwe quantified the fraction of cells
driving the spatial heterogeneity of Tacr1 expression based on
LISA, we observe a significant difference betweenmale and female
mice (Fig. 3F) (Student’s t-test P-value=0.01316). Tacr1 knockout
mice have been previously observed to show deficits in sexual
behavior (Berger et al. 2012). The sexually dimorphic spatial orga-
nization ofTacr1 expression in E-8 neuronsmay thus suggest a sex-
ually dimorphic difference in connectivity responsible for its
sexually dimorphic activation in sexual behavior. In this manner,
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MERINGUE enables quantitative and systematic evaluation of
spatial gene expression heterogeneity within transcriptionally
distinct cell subtypes from single-cell spatially resolved transcrip-
tomics data.

Spatially informed clustering identifies transcriptionally and

spatially distinct subtypes of cells

Spatial organizationmayplay an important role in shaping cellular
identities. Likewise, we may expect unsupervised clustering based

on transcriptional profiles alone to re-
cover spatially organized cell popula-
tions. However, for the aligned ISH data
of the D. melanogaster embryo, we find
such gene expression clustering analysis
to aggregate cells expressing different
pair-rule genes into a single transcrip-
tional cluster owing to these cells sharing
many other commonly up-regulated and
down-regulated genes despite their spa-
tially distinct organization (Fig. 4A,B),
consistent with previously published
analyses (Karaiskos et al. 2017).
However, as our spatial analysis was
able to distinguish between the two alter-
nating striped spatial patterns marked by
expression of pair-rule genes eve and odd,
respectively (Fig. 2E), we sought to incor-
porate spatial information to help dis-
tinguish these spatially distinct but
transcriptionally similar groups of cells.

Briefly, as in expression-based clus-
tering, we constructed a neighbor graph
in which nodes are cells and nodes are
connected with an edge if the represent-
ed cells that are within the k-most tran-
scriptionally similar cells for some user-
selected resolution parameter k. We in-
corporated spatial information by weigh-
ing the edges of the network by the
distance (d) between two neighborhoods
(i, j) in the adjacency representation W
(Methods): (1/dij+ 1) + 1. Again, use of
such a neighborhood representation
can accommodate the nonhomogenous
density of cells in tissues compared to a
Euclidean distance-basedmeasure of spa-
tial distance. In this manner, if two cells
are closer in space (dij is small), their tran-
scriptional similarity will give greater
weight in the graph-based clustering.
Incorporating these spatial weights into
our graph-based clustering with all other
parameters kept constant, we were able
to split the cluster of cells expressing ei-
ther eve or odd into two subpopulations,
as desired (Fig. 4C). Moreover, such spa-
tially informed clustering generally pre-
served all other subpopulations and did
not result in additional splitting for other
subpopulations (Fig. 4D). Furthermore,
we showed using simulated data how

such incorporation of spatial information can be used to distin-
guish transcriptionally identical but spatially distinct clusters of
cells (Supplemental Fig. S11). In a biological setting, however, cells
from the same cell type may populate spatially distinct locations,
but such distinct spatial locations alone would not necessarily in-
dicate the presence of finer subtypes. We thus suggest that such
spatially informed clustering to be complementary to differential
expression analysis, whereby identified spatially distinct cell sub-
populations should be analyzed for significantly differentially ex-
pressed genes to ensure the presence of significant, likely subtle,
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Figure 3. MERINGUE identifies spatial heterogeneity within cell types in the preoptic region of the
mouse hypothalamus using MERFISH. (A, left) Expression of three sample genes in Inhibitory I-6 neurons
in female naïve animal 7 (FN7). Each point is a cell. Cells are colored by expression with red denoting high
expression and blue denoting lowexpression. Cells that are not I-6 cells are colored in gray.Gad1 is highly
expressed in all I-6 neurons, whereas Necab1 and Sema3c show significant spatial variation. (Right)
Expression of Sema3c in I-6 in adjacent tissue sections in FN7 show similar spatial patterning. (B, left)
Expression of three sample genes in Inhibitory I-11 neurons in FN7. Again, Gad1 is highly expressed in
all I-11 cells, but Gabra1 and Nos1 show significant spatial variation. (Right) Expression of Nos1 in I-11
neurons in adjacent tissue sections in FN7 show similar spatial patterning. (C) Expression of Nos1 in I-
11 neurons in representative male naïve animals MN5, MN8, and MN9 show similar spatial patterns
to the female animal in B. (D) Fraction of Nos1+ I-11 cells for male and female animals across tissue layers
from the anterior to posterior preoptic region. Each dot represents one tissue layer in one animal. Lines
represent fitted curves for males and female animals. (E) Expression of Tacr1 in E-8 neurons in female (top)
and male (bottom) animals. (F ) Scale spatial heterogeneity of Tacr1 in E-8 neurons for male and female
animals across tissue layers from the anterior to posterior preoptic region. Each dot represents one tissue
layer in one animal. Lines represent fitted curves for male and female animals.
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transcriptional differences. Therefore, by
incorporating spatial information, in
conjunction with differential expression
analysis, we can identify finer, transcrip-
tionally and spatially distinct sub-
populations.

Having shown that incorporation of
spatial information via graph weighting
can be applied to identify finer transcrip-
tionally and spatially distinct subpopula-
tionsof cells,wenext sought to apply this
approach to identify finer neuronal sub-
types in the preoptic region profiled by
MERFISH (Moffitt et al. 2018). Focusing
on inhibitory neurons, we performed
spatially informed clustering analysis on
all inhibitory cells in the same animal
and tissue layer and compared resulting
clusters to previous annotations (Fig. 4E,
F; Supplemental Methods). We found
that among the eight most populous in-
hibitory neuronal subtypes (clusters
with >100 cells each), our spatially in-
formed clustering was able to produce
comparable clusters with the exception
of I-2 and I-11, which were each split
into two subtypes (Fig. 4G). I-11 was split
into two subtypes, cluster 10 (C10) and
cluster 5 (C5), that significantly differen-
tially expressed genes including Nos1
(Fig. 4H; Supplemental Fig. S12A), consis-
tent with our observations of significant
spatial heterogeneity in Nos1 expression
among I-11 neurons. Indeed, the two
I-11 subtypes appear to be spatially dis-
tinct with C10 positionedmore medially
andC5more laterally in theposterior pre-
optic region (Fig. 4I). Likewise, I-2 was
split into two subtypes, cluster 3 (C3)
and cluster 8 (C8), that significantly dif-
ferentially up-regulated genes including
Cplx3 and Dgkk, respectively (Fig. 4J;
Supplemental Fig. S12B,C). Previously, I-
2 neurons were observed to overlap with
both the sexually dimorphic nucleus of
the preoptic area (SDN-POA) as well as
other anatomical nuclei such as the bed
nucleus of the stria terminalis (BNST)
(Moffitt et al. 2018). By refining I-2 into
two finer subtypes, C8 is observed to
overlap more so with the BNST, while
C3 comparably more so with the SDN-
POA (Fig. 4K; Supplemental Fig. S12C).
I-2 neurons were previously observed to
show sexually dimorphic activation dur-
ing mating and aggression based on the
expression of immediate early gene Fos
(Moffitt et al. 2018). When we compare
activation of the two I-2 subtypes based
on significant Fos expression, we observe
comparatively greater activation during
mating behavior in one subtype than
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Figure 4. Spatially informed clustering distinguishes spatially distinct subpopulations of cells. (A)
Expression-based clustering of 3035 stage 6 D. melanogaster embryo cells with 84 marker genes by
aligned ISH identifies approximately five transcriptionally distinct clusters. (Top) UMAP embedding col-
ored by identified cluster annotations. (Bottom) Spatial coordinates colored by identified cluster annota-
tions. (B) Expression of select marker genes on the UMAP embedding with red denoting high expression
and blue denoting low expression. (C) Spatially informed clustering splits expression-based clusters in a
spatially coherentmanner. (Top) Again, UMAP embedding colored by identified spatially informed cluster
annotations. (Bottom) Spatial coordinates colored by identified spatially informed cluster annotations. (D)
Correspondence between expression-based clusters in A and spatially informed clusters in C highlights
high correspondence between most clusters with the exception of one cluster being split into two. (E)
UMAP embedding of populous inhibitory neuronal subtypes in one posterior preoptic tissue section
from one animal measured using MERFISH, where each point is a cell colored by the original subtype an-
notations. (F) Same UMAP embedding as E in which each point is a cell colored by the spatially informed
clustering annotation. Black dashed lines highlight clusters that have now split. (G) Correspondence be-
tween expression-based clusters in E and spatially informed clusters in F highlights high correspondence
betweenmost clusters with the exception of cells originally annotated as I-2 and I-11 now being split into
two. (H) Same UMAP embedding as E in which each point is a cell colored by Nos1 expression for cells
originally annotated as I-11. (I) Spatial location of cells within the tissue colored by their spatially informed
cluster assignment for cells originally annotated as I-11. (J) Same UMAP embedding as E, in which each
point is a cell colored by Cplx3 expression for cells originally annotated as I-2. (K ) Spatial location of cells
within the tissue colored by their spatially informed cluster assignment for cells originally annotated as I-2.
Regions corresponding to the BNSTand SDNare highlightedwith blue and reddashed lines, respectively.
Representative slice in representative animal shown. (L) Percentage of activated cells based on Fos expres-
sion during female (FS) andmale (MS) sexual behavior for spatially informed clusters C3 and C8 originally
annotated as I-2. Boxes in the box plot denote the median values and inner quartile ranges (IQR), and
whiskers denote 1.5 × IQR with additional outliers represented as points.
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the other (Fig. 4L). This suggests that the activation in I-2 neurons
observed previously may be driven by one of the two I-2 subtypes.
Although tuning parameters for regular graph-based clustering
without spatial information can also achieve splitting of I-2 and
I-11, other inhibitory neuronal clusters can become over split
(Supplemental Fig. S12D). Therefore, by incorporating spatial in-
formationviagraphweighting,MERINGUEprovides analternative
approach to tease apart spatially distinct subpopulations without
impacting other transcriptionally distinct subtypes.

MERINGUE identifies putative cell–cell communication

between cell types

Spatially resolved transcriptomic data offers opportunity to identi-
fy gene expression patterns that may be indicative of putative cell–
cell communication between spatially colocalized cell types. Previ-
ous computational approaches for inferring cell–cell communica-
tion from single-cell RNA-sequencing data have relied on
correlations or coexpression of receptor genes in one cell type
and corresponding expression of ligand genes in another cell
type (Ramilowski et al. 2015; Vento-Tormo et al. 2018; Smillie
et al. 2019; Fan et al. 2020). Spatially resolved transcriptomic data
provide theopportunity to inferpotential cell–cell communication
by identifying spatially complementary expression patterns be-
tween genes corresponding to interacting surface proteins such as
receptors and ligands on spatially neighboring cells. To enable
such analyses,we further build onMERINGUE’s spatial cross-corre-
lation functionalities by developing an inter-cell-type spatial cross-
correlation function to identify potential complementary spatial
patterns of gene expression across spatially colocalized cell types
(Fig. 1D; Supplemental Fig. S13A–D). However, unlike the spatial
autocorrelation function, this inter-cell-type spatial cross-correla-
tion function is not solvable; thus significance must be assessed
using permutation to derive a null model. We enhance computa-
tional efficiency by implementing a parallelized, adaptive permu-
tation testing approach and assess significance using a
permutation-based random label null model. We confirm using
simulations that such a permutation-based assessment produces
the expected type-I error rate (Supplemental Fig. S13E).

We first applied our approach to identify gene expression pat-
terns that may be indicative of putative cell–cell communication
between cells on beads corresponding to the Purkinje layer with
cells on spatially adjacent beads in Slide-seq data of the mouse cer-
ebellum (Fig. 5A). We used a set of more than 2500 known recep-
tor-ligand pairs previously supported by orthogonal biological
validations (Ramilowski et al. 2015). Restricting to well-detected
(CPM>0 inmore than 30 cells) receptor genes in the Purkinje layer
beads and well-detected ligand genes in the spatially adjacent
beads, we applied MERINGUE to test for significant spatial cross-
correlation between all receptor and ligand gene pairs. We identi-
fied statistically significant inter-cell-type spatial cross-correlation
between expression of protein tyrosine phosphatase, receptor type
Z, polypeptide 1 (Ptprz1 [also known as PTPζ]) in beads corre-
sponding to Purkinje layer and expression of its ligand Ptn (secret-
ed growth factor pleiotrophin) in spatially adjacent beads (Fig. 5B,
C). Ptprz1 has been previously identified to be expressed by
Purkinje neurons, whereas Ptn has been previously identified to
distribute along Bergmann glial fibers in postnatally developing
cerebellum (Matsumoto et al. 1994). Although this Slide-seq data
set does not provide single-cell resolution, we confirm significant
coexpression of Ptprz1 with Purkinje cell specific promoter Pcp2
(Fisher’s exact test P-value =2.3 ×10−18), suggestive that the

Ptprz1 expression may be attributed to Purkinje cells within the
Purkinje layer beads. Likewise, we confirm significant coexpres-
sion of Ptn with Slc1a3 (glutamate aspartate transporter [also
known as GLAST]), a glutamate transporter expressed by
Bergmann glia (Fisher’s exact test P-value=4.5 ×10−36). In
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Figure 5. MERINGUE identifies putative cell–cell communication in the
cerebellum using Slide-seq data. (A) Adjacency relationship between Slide-
seq beads. Orange dots correspond to beads previously annotated as cor-
responding to the Purkinje layer. Green dots correspond to beads that are
spatially adjacent. Gray lines connect each bead with its spatial neighbors
and is agnostic to bead density. (B, left) Expression of receptor Ptprz1 in
beads annotated to correspond to the Purkinje layer. (Right) Expression
of corresponding ligand Ptn in spatially adjacent beads. Same select region
highlighted. (C) Bar plot of −log10(adjusted P-value) for the inter-cell-type
spatial cross-correlation statistic of all receptors in Purkinje layer beads ver-
sus ligands in the spatially adjacent beads. Red line indicates alpha = 0.2
multiple testing corrected significance threshold. (D, left) Expression of li-
gand Psap in beads annotated to correspond to the Purkinje layer. (Right)
Expression of corresponding receptor Gpr37l1 in spatially adjacent beads.
Same select region highlighted as D. (E) Bar plot of −log10(adjusted P-val-
ue) for the inter-cell-type spatial cross-correlation statistic of all ligands in
Purkinje layer beads versus receptors in the spatially adjacent beads.
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contrast, restricting to well-detected li-
gand genes in the Purkinje layer beads
and well-detected receptor genes in the
spatially adjacent beads (Fig. 5D,E), we
do not identify significant spatial cross-
correlation between any receptor and li-
gand gene pairs, including between Ptn
expression in beads corresponding to
Purkinje layer and Ptprz1 expression in
spatially adjacent beads, indicative of
the cell type specificity of inferred recep-
tor-ligand interactions. Previous studies
with cerebellar slice culture systems
have shown that PTN-PTPRZ1 signaling
is involved in the morphogenesis of Pur-
kinje dendrites (Tanaka et al. 2003). The
identification of such putative cell–cell
communication between Bergmann glia
and Purkinje cells may be suggestive of
the potential for glial signals to actively
regulate neuronal function and contrib-
ute to sustained plasticity in adult brains
(Barres 2008).

We next sought to identify gene
expression patterns that may be indica-
tive of putative cell–cell communication
between cell types using single-cell reso-
lution MERFISH data of the preoptic re-
gion. Previously, Moffitt et al. (2018)
visually noted that Cyp19a1 (also known
as aromatase) enriched inhibitory I-2
neurons displayed substantial spatial
overlap with estrogen receptor (Esr1) en-
riched neuronal subtypes. CYP19A1 is an
enzyme that converts testosterone to es-
trogen, thereby modulating steroid hor-
mone signaling in the preoptic region.
The spatial organization of these
CYP19A1-enriched neuronal subtypes
with ESR1-enriched cells suggest that es-
trogen synthesized by these CYP19A1-
expressing neurons may be interacting
with estrogen receptors on spatially adjacent ESR1-expressing cells
in a paracrinemanner. To quantitatively assess to putative cell–cell
communication between neuronal subtypes and spatially neigh-
boring cells via such paracrine signaling, we applied MERINGUE
to assess for significant spatial cross-correlation between
Cyp19a1 expression in all neuronal subtypes and Esr1 expression
in spatially adjacent neurons. Indeed, we are able to identify stat-
istically significant spatial cross-correlation between Cyp19a1 ex-
pression in I-2 neurons and Esr1 expression in spatially adjacent
neurons in a manner that is consistent across tissue layers and re-
producible across animals (Fig. 6A). In contrast, neuronal subpop-
ulations I-13 also express Cyp19a1 but do not show significant
spatial cross-correlation with Esr1 in surrounding cells (Fig. 6B,C;
Supplemental Fig. S14A). Furthermore, we also apply MERINGUE
to test for spatial cross-correlation between Cyp19a1 expression
in all neuronal subtypes and androgen receptor (Ar) expression
in spatially adjacent neurons and do not identify consistently sig-
nificant associations (Supplemental Fig. S14B), thereby highlight-
ing the nonrandomness of the Esr1 juxtaposition. This thus
highlights MERINGUE’s potential to quantitatively and systemati-

cally identify complementary gene expression patterns that may
be indicative of cell–cell communication.

Discussion

Spatially resolved transcriptomic measurements demand compu-
tational approaches to identify and characterize significant spa-
tial gene expression heterogeneity. Here, we presented
MERINGUE as a density-agnostic approach to characterize spa-
tially heterogeneous gene expression by identifying genes with
spatially autocorrelated expression and gene pairs with spatially
cross-correlated expression. We validated our approach by ana-
lyzing spatially resolved transcriptomic data from both sequenc-
ing and imaging-based methods in 2D and 3D to recover known
biologically relevant spatial patterns. Our analysis of the mouse
preoptic region by MERFISH revealed sexually dimorphic spatial
organization of Tacr1 expression in excitatory E-8 neurons and
identified additional neuronal subpopulations within inhibitory
I-2 and I-11 neurons with spatially distinct organization that
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Figure 6. MERINGUE systematically and quantitatively evaluates for putative cell–cell communication
for neuronal subtypes in the preoptic region usingMERFISH data. (A) Distribution of −log10(P-values) for
the spatial cross-correlation between Cyp19a1 expression in neuronal subtypes and Esr1 expression in ad-
jacent cells across animals. Boxes in the box plot denote the median values and inner quartile ranges
(IQR) and whiskers denote 1.5 × IQR with additional outliers represented as points. Red dotted line is
the alpha = 0.05 significance threshold. Generally, inhibitory neuron subtype I-2 shows significant spatial
cross-correlation between Cyp19a1 expression and Esr1 expression in adjacent cells in a manner that is
consistent across animals. (B) Cyp19a1 expression in I-2 neurons in one tissue slice in one animal with
red indicating high expression and blue indicating low expression. Representative slice and animal
shown. Select areas are highlighted in the zoom-in. (C ) Esr1 expression in cells neighboring I-2 neurons
in one tissue layer in one animal, with red indicating high expression and blue indicating low expression.
Representative slice and animal shown. The same select areas as B are highlighted in the zoom-in.
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may play roles in murine sexual behavior. MERINGUE is highly
scalable and computationally efficient compared to previous spa-
tial analysis methods (Supplemental Fig. S15). Furthermore,
MERINGUE is robust to spatial variations in cellular density
and can thus better accommodate nonuniform cellular densities
common in tissues.

In comparison with previously published spatial gene expres-
sion analysismethods, althoughMERINGUE identifies and groups
spatially heterogeneous genes into primary spatial patterns, it does
not interpret identified spatial patterns based on predefined aggre-
gated or alternating spatial patterns. In this manner, we find
MERINGUE to be complementary to previously published spatial
gene expression analysismethods in characterizing the spatial pat-
terns of spatially heterogeneous genes. Likewise, we find
MERINGUE to be complementary to expression-based clustering
analysis to identify additional aspects of spatial heterogeneity
within cell clusters or shared spatial gradients across cell clusters.
In addition, in analyzing spatially resolved single-cell gene expres-
sion data sets obtained from different technologies, MERINGUE
may also be applied in combination with different normalization
and error model schemes such as cell volume-based normalization
for imaging data (Moffitt et al. 2018) and cell density normaliza-
tion for ST data (Saiselet et al. 2020). Furthermore, for zero-inflated
transcriptomicsmeasurements, additional dropout errormodeling
or imputation of dropoutsmay be applied beforeMERINGUE anal-
ysis (Kharchenko et al. 2014; Hou et al. 2020).

Finally, although MERINGUE uses spatial cross-correlation
analysis to identify gene expression patterns that may be indicative
of putative cell–cell communication, such inference is based on spa-
tial proximity, which restricts inferred interactions to short-range
interactions or chemical cues. This is limiting for tissues such as
the mammalian brain, where neuronal communication and inter-
actions often span long distances because of long axons and den-
dritic processes. We anticipate that additionally combining single-
cell transcriptomics profiling with neuronal tracing could derive
new binary weight matrices that would fit intoMERINGUE’s analy-
sis framework, enabling study of more comprehensive cell–cell in-
teractions in a spatially resolved manner. Likewise, in the future,
computational approaches such as MERINGUE, in combination
with systematic biological perturbations, can help elucidate the
mechanisms responsible for these spatial patterns and enhance
our understanding of the spatial organization of and communica-
tions between cell types and cell states within tissues.

Methods

MERINGUE approach

Data preprocessing and quality control

Datamust be corrected for sequencing depth differences and other
technically driven variation of expression magnitude before
MERINGUE. Counts per million (CPM) normalization without
log transforming was applied to all spatially resolved transcrip-
tomic data sets. For MERFISH data, RNA counts were normalized
per cell by the imaged volume of each cell per the originally pub-
lished analysis (Moffitt et al. 2018).

Adjacency weight matrix

Given a set of spatial positional coordinates for spatially resolved
data sets, such as cells, MERINGUE represents these cells as con-
nected neighborhoods in space using an adjacency weight matrix

W, where

Wij = 1 if celli and cellj are adjacent
0 if celli and cellj are not adjacent.

{

Cells are defined as adjacent using Delaunay triangulation.
The Delaunay triangulation of a discrete set of points (in this
case, cells in space) is equivalent to the Voronoi diagram for the
same set of points (Okabe et al. 1992). This approach is thus equiv-
alent to defining cells as adjacent if they haveVoronoi polygons, as
inferred from Voronoi tessellation, that share an edge. For biolog-
ical interpretability, adjacency relationships beyond a certain spa-
tial distance can also be ignored. Delaunay triangulation can also
accommodate 3D data.

Identifying significantly spatially heterogeneous genes

We define spatially heterogeneous genes as genes with uneven, of-
ten aggregated or patterned, spatial distribution of expression
magnitudes. MERINGUE identifies such spatially heterogeneous
genes by computing Moran’s I (Moran 1950)

I = N∑N
i
∑N

j Wij

∑N
i
∑N

j Wij(xi − �x)(xj − �x)∑N
i (xi − �x)2

for each gene given its normalized gene expression vector x across
a population of N cells using the adjacency weight matrix W de-
scribed previously to detect for positive spatial autocorrelation.

The expected value of I under the null hypothesis of no spa-
tial autocorrelation can be solved by computing the first moment
(Getis 1995) and simplified to

E(I) = −1
N − 1

.

Likewise, variance can be derived using the second moment
and simplified to

Var(I) = N∗S4 + S3∗S5
(N − 1)(N − 2)(N − 3)W2 −

−1
N − 1

( )2

,

where

S1 = 1
2

∑N
i

∑N
j

(Wij +Wji)
2

S2 =
∑N
i

∑N
j

Wij +
∑N
j

Wji

⎛
⎝

⎞
⎠

2

S3 =

∑N
i (xi − �x)4

N∑N
i (xi − �x)2

N

( )2

S4 = (N2 − 3∗N + 3)∗S1 −N∗S2 + 3∗W2

S5 = (N2 − N)∗S1 − 2∗N∗S2 + 6W2

W =
∑N
i

∑N
j

wij.

We implemented these calculations in C++ using Rcpp
(Eddelbuettel and François 2011).

In a given data set, we evaluated all genes for spatial heteroge-
neity and applied the Benjamini–Hochberg procedure to correct
for multiple testing and control for false discovery (Benjamini
and Hochberg 1995).

We assumedhere that the expressionmagnitudes represented
by each neighborhood is comparable such that observed differenc-
es in gene expression levels across neighborhoods arenot the result
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of different sequencing depths or other technical confounders. In
this manner, x must already be normalized to control for variabil-
ity in sequencing depth or other technical confounders, where ap-
propriate, before analysis with Moran’s I. Likewise, because
Moran’s I is not defined for constant signals, genes without any
expression variability were omitted from analysis.

If the data are produced by a mechanism that inherently in-
duces some autocorrelation, such as high variability between spa-
tially segregated batches or presence of noisy hotspots, then such a
null hypothesis would not be appropriate, and evaluation of sig-
nificance must be performed using permutation. We showed at
least for a random subset of genes in our tested data sets that the
null hypothesis is appropriate and thus results in essentially iden-
tical P-values regardless of approach (Supplemental Fig. 2B).

Characterizing the scale of significantly spatially heterogeneous genes

For a given gene x identified as significantly spatially heteroge-
neous, MERINGUE next quantifies the scale of the spatial pattern
by calculating the local indicators of spatial association (Anselin
1995) (LISA) for each neighborhood: i

Ii = N
(xi − �x)

∑N
j Wij(xj − �x)∑N

i (xi − �x)2
.

LISA relates to Moran’s I via

I =
∑N
i

Ii
N
,

and as such, LISA also contains a closed form that can be solved for
its expected value and standard deviation under the null hypoth-
esis of no spatial autocorrelation. We defined the scale of a gene’s
spatial pattern as the percentage of cells with a LISA that is statisti-
cally significant, that is, has a P-value below an alpha threshold
(default: 0.05). Downstream analyses can be restricted to spatially
heterogeneous genes of a sufficient scale, defined by default as 5%
of cells.

Again, these calculations were implemented in C++ using
Rcpp (Eddelbuettel and François 2011).

For visualization purposes, we further implemented a signed
LISA score:

sIi = sign(xi − �x)∗ N
(xi − �x)

∑N
j wij(xj − �x)∑N

i (xi − �x)2
.

Primary pattern determination using spatial cross-correlation analysis

After identifying significantly spatially heterogeneous genes of a
sufficient scale, MERINGUE groups these genes into primary spa-
tial patterns.We calculate a spatial cross-correlation index (SCI) be-
tween all pairs of these genes. For N cells, gene x, and gene y, the
SCI can be calculated as

SCI = N

2
∑N

i
∑N

j Wij

∑N
i
∑N

j Wij(xi − �x)(yj − �y)���������������∑N
i (xi − �x)2

√ ���������������∑N
j (yj − �y)2

√ .

The SCI for all pairs of genes forms a spatial cross-correlation
matrix, which we used as the basis for hierarchical clustering.
Clusters of genes were then identified using dynamic tree cutting
(Langfelder et al. 2008) such that highly spatially cross-correlated
genes fall into the same clusters, thus comprising the primary spa-
tial patterns. By default, the hybrid dynamic tree cutting approach
was used.

We visualized these primary patterns by interpolating across
spatial regions not covered by cells using Akima interpolation
(Akima 1996a,b).

Spatially informed clustering

To identify spatially distinct but transcriptionally similar subpop-
ulations, we began with graph-based expression clustering.
Specifically, we constructed a k-nearest neighbor graph on the re-
duced principal components space derived from normalized
gene expression. In such a graph, each node is a cell and they are
connected with an edge if they are among the k-nearest neighbors
based on transcriptional similarity. To introduce spatial informa-
tion,weweighted the edges of the graph based on the geodesic spa-
tial distance between the two nodes’ cells. The geodesic spatial
distance is computed based on the adjacency matrix W where
two cells would have a spatial distance of 1 if they are neighbors
or 2 if they are neighbors of neighbors and so forth.We then trans-
formed the spatial distance into a weight that is inversely propor-
tional to the distance such that cells closer together (i.e., with a
small distance) will be given higher weight and cells farther apart
(i.e., large distance) will be given a smaller weight: weight = (1/dis-
tance+ α) + β, where α and β are pseudocounts to guard against ex-
cessively large and small weights, respectively. By default, we used
α= β=1, though the unit and magnitude of both α and β will
depend on the unit and magnitude of distance. We then apply
Louvain graph-based clustering to the resulting weighted graph
(Phyu and Myat Min 2019).

Inference of cell–cell communication using inter-cell-type spatial
cross-correlation analysis

To infer cell–cell communication between spatially colocalized cell
types, MERINGUE focuses on identifying complementary gene
expression patterns between known receptor-ligand pairs
(Ramilowski et al. 2015).

For each receptor-ligand pair, we computed an inter-cell-type
spatial cross-correlation (iSCI) between expression of receptor x for
the N cells of cell type A and the expression of ligand y for the M
cells of cell type B:

iSCI = N +M

2
∑A

i
∑B

j Wictij

∑N
i
∑M

j Wictij(xi − �x)(yj − �y)���������������∑A
i (xi − �x)2

√ ���������������∑B
j (yj − �y)2

√ .

Here, the inter-cell type adjacency weight matrixWictij=1 if a
cell of cell type A and a cell of cell type B are inferred to be adjacent
or vice versa, andWictij=0 otherwise, to capture only spatial cross-
correlation patterns between the two cell types.

We assessed statistical significance by comparing the ob-
served iSCI with the likelihood of observing such an extremely
positive value under a permutation-based random labeling model
randomly permuting cell labels. To enhance computational effi-
ciency, we allowed for parallelization across multiple cores and
used an adaptive permutation testing approach whereby recep-
tor-ligand pairs are first assessed for significance with 100 permu-
tations by default, and putatively significant hits with
permutation P-values < 1/100 are then reassessed with 1000 per-
mutations and so forth. Additional gene pairs with known inter-
acting products such as hormone-receptors can also be evaluated
by this approach.

Interactive application

An interactive application built on Shiny (Chang et al. 2020) can
be launcheddirectly fromR sessions to enable interactive visual ex-
ploration of MERINGUE results and statistics.
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Software availability

MERINGUE is programmed inC++ and available as an open-source
R software package (R Core Team 2020) with the source code avail-
able in the Supplemental Material and on GitHub (https://github
.com/JEFworks-Lab/MERINGUE). Additional documentation and
tutorials are available (https://JEF.works/MERINGUE).
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