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Reference-free cell type deconvolution of
multi-cellular pixel-resolution spatially
resolved transcriptomics data
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Recent technological advancements have enabled spatially resolved transcriptomic profiling

but at multi-cellular pixel resolution, thereby hindering the identification of cell-type-specific

spatial patterns and gene expression variation. To address this challenge, we develop

STdeconvolve as a reference-free approach to deconvolve underlying cell types comprising

such multi-cellular pixel resolution spatial transcriptomics (ST) datasets. Using simulated as

well as real ST datasets from diverse spatial transcriptomics technologies comprising a

variety of spatial resolutions such as Spatial Transcriptomics, 10X Visium, DBiT-seq, and

Slide-seq, we show that STdeconvolve can effectively recover cell-type transcriptional pro-

files and their proportional representation within pixels without reliance on external single-

cell transcriptomics references. STdeconvolve provides comparable performance to existing

reference-based methods when suitable single-cell references are available, as well as

potentially superior performance when suitable single-cell references are not available.

STdeconvolve is available as an open-source R software package with the source code

available at https://github.com/JEFworks-Lab/STdeconvolve.
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Delineating the spatial organization of transcriptionally
distinct cell types within tissues is critical for under-
standing the cellular basis of tissue function1. Recent

technologies have enabled spatial transcriptomic (ST) profiling
within tissues at multi-cellular pixel-resolution2. As such, these
ST measurements represent cell mixtures that may comprise
multiple cell types. This lack of single-cell resolution hinders the
characterization of cell-type-specific spatial organization and gene
expression variation.

To address this challenge, several reference-based, supervised
deconvolution approaches have recently been developed to esti-
mate the proportion of cell types within ST pixels. Of these,
SPOTlight3 uses cell-type marker genes derived from a single-cell
RNA-sequencing (scRNA-seq) reference to seed a non-negative
matrix factorization. RCTD4 uses the cell-type-specific mean
expression of marker genes derived from a scRNA-seq reference
to build a probabilistic model of the contribution of each cell type
to the observed gene counts in each pixel. SpatialDWLS5 uses
cell-type signature genes derived from a scRNA-seq reference to
first enrich for cell types likely to be in each pixel, then applies a
dampened weighted least squares approach to infer the cell-type
composition. As such, these approaches rely on the availability of
a suitable single-cell reference, which may present limitations if
such a reference does not exist due to budgetary, technical6, or
biological limitations7. While the rise of scRNA-seq references
through atlasing efforts such as the BRAIN Initiative Cell Census
Network8, the Human BioMolecular Atlas Program, and Human
Cell Atlas9 may help alleviate such limitations particularly for
healthy tissues, processing independent tissue samples or differ-
ent sections of the same tissue may still result in systematically
different gene expression quantifications due to batch effects as
well as inter- and intra-sample heterogeneity. Additionally, dif-
ficulties dissociating and capturing certain cell types via single-cell
sequencing may result in missing or inconsistent cell types
between scRNA-seq references and ST datasets10,11. Further,
scRNA-seq references and ST datasets may be affected by dif-
ferent perturbations manifesting as distinct transcriptional dif-
ferences affecting reference-based deconvolution accuracy and
subsequent biological interpretations. As such, a reference-free
deconvolution approach provides an alternative strategy for
deconvolving cell types when an appropriate reference is not
available.

Here, we developed STdeconvolve (available at https://github.
com/JEFworks-Lab/STdeconvolve and as Supplementary Soft-
ware) as a reference-free, unsupervised approach for deconvol-
ving multi-cellular pixel-resolution ST data (Fig. 1).
STdeconvolve builds on latent Dirichlet allocation (LDA), a
generative statistical model commonly used in natural language
processing for discovering latent topics in collections of docu-
ments. In the context of natural language processing, given a
count matrix of words in documents, LDA infers the distribution
of words for each topic and the distribution of topics in each
document. In the context of ST data, given a count matrix of gene
expression in multi-cellular ST pixels, STdeconvolve applies LDA
to infer the putative transcriptional profile for each cell type and
the proportional representation of each cell type in each multi-
cellular ST pixel (“Methods”). While LDA has previously been
applied in the context of deconvolving cell types in bulk RNA-seq
data12,13, STdeconvolve further leverages several unique aspects
of ST data in its application of LDA (Supplementary Note 1).
Briefly, these unique aspects of ST data include (i) the limited
number of cells and cell types represented in each ST pixel, (ii)
the limited impact of batch effects on the measured gene
expression across pixels, (iii) the large number of pixels compared
to cell types, and (iv) the likely heterogeneity of cell-type pro-
portional distribution across pixels in tissues. Leveraging these

aspects, STdeconvolve feature selects for genes likely to be
informative of latent cell types to improve the application of LDA
to ST data. Specifically, STdeconvolve selects for significantly
overdispersed genes, or genes with higher-than-expected expres-
sion variance across ST pixels14 (“Methods”). In addition, as the
application of LDA requires the number of transcriptionally
distinct cell types, K, to be set a priori, STdeconvolve provides
several data-driven metrics to guide the estimation of an appro-
priate K (“Methods”, Supplementary Note 2).

Results
STdeconvolve accurately recovers cell-type proportions and
transcriptional profiles in simulated ST data. As a proof of
concept, we first evaluated the performance of STdeconvolve in
recovering the proportional representations of cell types and their
transcriptional profiles using simulated ST data. We simulated ST
data by aggregating the gene expression of cells from single-cell
resolution multiplex error-robust fluorescence in situ hybridiza-
tion (MERFISH) data of the mouse medial preoptic area
(MPOA)15 within spatially contiguous pixels. Previously, MER-
FISH was previously applied to map the spatial distribution of
135 select genes within MPOA brain tissue. These select 135
genes were chosen to distinguish between major non-neuronal
cell types as well as neuronal subtypes. Imaging-based cell seg-
mentation was performed and the counts of genes per cell were
quantified to achieve single-cell resolution spatially resolved
transcriptomic profiling. Subsequent transcriptional clustering
analysis on the single-cell resolution gene expression measure-
ments identified 9 major cell types, including excitatory and
inhibitory neurons. Further clustering found that these excitatory
and inhibitory neurons could be subdivided into 69 finer neu-
ronal subtypes.

To simulate multi-cellular pixel-resolution ST data, we
aggregated the single-cell resolution MERFISH data into
100 µm2 pixels (Fig. 2a, Supplementary Fig. S1A, B, “Methods”).
Given the already limited 135 gene panel chosen to distinguish
between cell types, additional feature selection for this dataset was
not necessary (Supplementary Note 3). Applying STdeconvolve,
we identified K= 9 cell types and deconvolved their proportional
representation and transcriptional profiles in each simulated pixel
(Fig. 2b, Supplementary Figs S1C, S2A, Supplementary Methods).
To infer the identities of the deconvolved cell types for
benchmarking purposes, we matched their deconvolved tran-
scriptional profiles with the transcriptional profiles of ground
truth cell types by testing for enrichment of ground truth cell-
type-specific marker genes (Methods, Supplementary Fig. S2B).
We observed strong correlations between the transcriptional
profiles of each deconvolved cell-type and matched ground truth
cell type across genes (Fig. 2c). Likewise, we observed strong
correlations between the proportions of each deconvolved cell
type and matched ground truth cell type across simulated pixels
(Fig. 2d). We further quantified this performance using the root-
mean-square error (RMSE) of the deconvolved cell type
proportions compared to ground truth across simulated pixels
(“Methods”, Fig. 2e). In this manner, STdeconvolve can
accurately recover the proportional representation and transcrip-
tional profiles of major cell types.

STdeconvolve achieves competitive performance to reference-
based, supervised deconvolution approaches. We next sought to
compare the performance of STdeconvolve to existing supervised
reference-based deconvolution approaches SPOTlight, RCTD,
and spatialDWLS using our simulated 100 µm2 resolution ST
data of the MPOA. As described previously, these approaches
require a single-cell transcriptomics reference for deconvolution.
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As an ideal single-cell transcriptomics reference, we used the
original single-cell MERFISH data that was used to construct the
simulated ST data (Supplementary Fig. S3A, Supplementary
Methods). We again quantified the performance of each approach
using the RMSE of the deconvolved cell-type proportions com-
pared to ground truth across simulated pixels. In general, we find
the performance of STdeconvolve to be comparable to these
reference-based deconvolution approaches when such an ideal
single-cell transcriptomics reference is used (Fig. 2e, f).

One potential limitation of such existing reference-based
deconvolution approaches is their reliance on a suitable single-
cell transcriptomics reference. We thus sought to evaluate the
performance of these reference-based deconvolution approaches
when a suitable single-cell reference is not available. To this end,
we removed excitatory and inhibitory neuronal cell types to
simulate a less suitable single-cell transcriptomics reference
(Supplementary Methods). We then deconvolved the simulated
ST data of the MPOA using each reference-based deconvolution
approach with this new less suitable reference and computed the
RMSE across pixels. Because STdeconvolve does not use a
reference, its performance does not change. However, the
performance for all reference-based deconvolution approaches
resulted in a significantly higher RMSE (Diebold–Mariano p value
< 2.2 × 10−16) than STdeconvolve (Fig. 2g). Likewise, pixels
previously comprised of neurons were now erroneously predicted
by reference-based deconvolution approaches to be comprised
primarily of immature oligodendrocytes (Supplementary
Fig. S3B). In addition, we evaluated the performance of each
reference-based deconvolution approach after removing rarer
ependymal cells from the single-cell transcriptomics reference.
Again, given this less suitable single-cell transcriptomics refer-
ence, pixels previously comprised of ependymal cells were now
erroneously predicted by reference-based deconvolution
approaches to be comprised primarily of astrocytes (Supplemen-
tary Fig. S3C). Thus, the performance of reference-based

deconvolution approaches is sensitive to differences in cell-type
composition between the ST data and the single-cell transcrip-
tomics reference used.

Likewise, such an ideal single-cell transcriptomics reference
that optimally matches the cell-type composition and measure-
ment sensitivities of the ST data to be deconvolved may not be
available. Therefore, this ideal MERFISH MPOA single-cell
transcriptomics reference likely provides an upper bound on
performance for reference-based deconvolution approaches. To
provide a more realistic evaluation of performance for reference-
based deconvolution approaches, we sought to deconvolve our
simulated ST data of the MPOA using a scRNA-seq reference
from a mouse brain atlasing effort16. Again, as a reference-free
deconvolution approach, the performance of STdeconvolve does
not change. However, again, the performance for all reference-
dependent methods resulted in a significantly higher RMSE
(Diebold–Mariano p value < 2.2 × 10−16) than STdeconvolve
(Fig. 2h, Supplementary Methods). Thus, STdeconvolve achieves
comparable performance to reference-based, supervised decon-
volution approaches when an ideal single-cell transcriptomics
reference is used, and potentially better performance when an
ideal single-cell transcriptomics reference is not available.

STdeconvolve recovers perturbation specific gene expression
profiles. Though reference-based deconvolution approaches may
accurately recover cell-type proportions in ST data, they currently
do not deconvolve cell-type-specific gene expression profiles.
Nonetheless, perturbations may induce cell-type-specific tran-
scriptional changes in ST data that would not be identifiable by
current reference-based deconvolution approaches unless
perturbation-matched single-cell transcriptomics references are
used. While the availability of scRNA-seq references grows due to
single-cell atlasing initiatives, these datasets primarily represent
collections of healthy tissues8,9,17–19. As such, there is a particular

Fig. 1 Overview of STdeconvolve. a STdeconvolve takes as input a spatial transcriptomics (ST) gene counts matrix of D pixels (rows) by N genes
(columns). A matrix of spatial coordinates for each of the D pixels can also be used for visualization. b STdeconvolve first feature selects genes for
deconvolution, such as genes with counts in more than 5% and less than 95% of the pixels, and overdispersed across the pixels. STdeconvolve then guides
the selection of the optimal number of cell types to be deconvolved, K. STdeconvolve finally applies LDA modeling. A graph representation of LDA
modeling and the parameters to be learned is shown. Shaded circle indicates observed variables and clear circles indicate latent variables. c STdeconvolve
outputs two matrices: (1) β, the deconvolved transcriptional profile matrix of K cell types over N’ feature selected genes, and (2) θ, the proportions of K cell
types across the D pixels. The proportions of deconvolved cell types can then be visualized across the pixels.
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scarcity of suitable scRNA-seq references available for reference-
based deconvolution of ST data in the context of disease and
other perturbations.

In contrast to current reference-based deconvolution
approaches, STdeconvolve can estimate cell-type transcriptional
profiles in a manner that is not constrained by the expression
profiles of specific cell types defined in single-cell transcriptomics
references. We therefore sought to explore the potential of
STdeconvolve in detecting these perturbation-driven cell-type-
specific gene expression changes using simulated ST data from
mixtures of single cells assayed by scRNA-seq (Fig. 3a, Supple-
mentary Methods). Briefly, we took advantage of scRNA-seq data
previously collected from mammary tissues of aged and young
mice20. Previous transcriptional clustering analysis revealed a
subpopulation of macrophages with age-associated gene expres-
sion changes. Specifically, aged macrophages upregulated Cd274
and Clec4d, and downregulated Coro1a compared to young
macrophages. Therefore, we simulated ST data of aged tissue
using mixtures of aged macrophages and other luminal cells and

ST data of young tissue using mixtures of young macrophages
and other luminal cells (Fig. 3b). We then sought to evaluate the
ability of STdeconvolve to recover these age-associated gene
expression changes in macrophages (Supplementary Methods).
Applying STdeconvolve using K = 2 cell types to the simulated
ST data of both aged and young tissue, we found that the
deconvolved transcriptional profiles were highly correlated with
the matched ground truth gene expression profiles from scRNA-
seq in all cases (Supplementary Fig. S4A, B). Further, when we
compared the deconvolved transcriptional profiles of aged versus
young macrophages, we were able to identify upregulated genes
included Cd274 and Clec4d, and downregulated genes included
Coro1a, consistent with the original study (Fig. 3c). Thus,
STdeconvolve can potentially recover perturbation-driven cell-
type-specific gene expression changes in ST data.

Deconvolution provides distinct insights compared to clus-
tering analysis. Generally, we note that deconvolution of multi-
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Fig. 2 Deconvolution of simulated ST data. a Ground truth single-cell resolution MERFISH data of one section of the MPOA partitioned into 100 µm2

pixels (black dashed squares). Each dot is a single cell colored by its ground truth cell type label. b Proportions of deconvolved cell types from
STdeconvolve represented as pie charts for each simulated pixel. c The ranking of each gene based on its expression level in the deconvolved cell-type
transcriptional profiles compared to its gene rank in the matched ground truth cell-type transcriptional profiles. d Heatmap of Pearson’s correlations
between the deconvolved and ground truth cell type proportions across simulated pixels. Ground truth cell types are ordered by their frequencies in the
ground truth dataset. Matched deconvolved and ground truth cell types are boxed. e Root-mean-square-error (RMSE) of the deconvolved cell-type
proportions (n = 3072 pixels) compared to ground truth for STdeconvolve, f for supervised deconvolution approaches using the ideal single cell
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cellular pixel resolution ST data can provide distinct insights from
clustering analysis. To demonstrate this, we again simulated ST
data using mixtures of single cells assayed by scRNA-seq (Sup-
plementary Methods). Specifically, we simulated ST pixels com-
prised of mixtures of either luminal cells and pericytes or
pericytes and macrophages (Fig. 3d). Applying clustering analysis
to these ST pixels, we identified 2 clusters corresponding to either
mixtures of luminal cells and pericytes or mixtures of pericytes
and macrophages (Fig. 3e). In contrast, applying STdeconvolve

with K= 3, we were able to recover the proportional repre-
sentations of luminal cells, pericytes, and macrophages as well as
their original cell-type-specific transcriptional profiles (Fig. 3f).

Such differences between deconvolution and clustering analysis
extends to resolution enhancing clustering approaches such as
BayesSpace21. Briefly, BayesSpace utilizes a spatial prior that
encourages spatially neighboring pixels to cluster into the same
transcriptional cluster. Enhanced resolution clustering is obtained
after subdividing each pixel and modeling the expression profiles
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of the subpixels as additional latent parameters estimated in the
Bayesian model. Applying BayesSpace with 3 clusters to our
simulated ST data, we obtained 3 spatially discrete clusters
corresponding to different mixtures of luminal cells and pericytes
and mixtures of pericytes and macrophages (Fig. 3g, Supplemen-
tary Methods). Compared to STdeconvolve, both regular
transcriptional clustering and resolution enhanced clustering
with BayesSpace exhibited significantly higher RMSE (Diebold-
Mariano p value < 2.2 × 10−16) (Fig. 3h).

To further demonstrate the difference between deconvolution
and clustering analysis for ST data, we again simulated ST data
using a single-cell resolution MERFISH dataset of a coronal
section of the mouse brain. We analyzed the single-cell resolution
transcriptional profiles to identify 20 transcriptionally distinct cell
types and again simulated multi-cellular pixel-resolution ST data
by aggregating the single cells into 100 µm2 pixels (Fig. 3i,
Supplementary Fig. S5A, B, Supplementary Methods). The
organization of cell types within the mouse brain is highly
complex with many regions including the thalamus at the central
region of this coronal section being composed of mixtures of
multiple transcriptionally distinct cell types. We thus sought to
evaluate whether STdeconvolve could better recover the propor-
tional representation of cell types compared to resolution
enhanced clustering with BayesSpace. Applying both STdecon-
volve and BayesSpace, we generally recover the cell-type pixel
proportions and visually recapitulate the spatial organization of
cell types within various brain structures (Fig. 3j, k, Supplemen-
tary Methods). However, focusing in on the central region of the
coronal section encompassing the thalamus, we indeed saw a
visual difference between the spatial organization of cell types
recovered by deconvolution via STdeconvolve compared to
resolution enhanced clustering via BayesSpace (Fig. 3j, k inset).
Quantifying performance, BayesSpace exhibited significantly
higher RMSE compared to STdeconvolve (Diebold-Mariano p
value < 2.2 × 10−16) as a whole (Supplementary Fig S5C, though
more discernably in the thalamus region (Fig. 3l). Taken together,
deconvolution approaches such as STdeconvolve can reveal cell
types and patterns not evident through clustering and resolution
enhanced clustering approaches alone when applied to multi-
cellular pixel resolution data for pixels containing heterogeneous
mixtures of cell types.

STdeconvolve characterizes the spatial organization of tran-
scriptionally distinct cell types in real ST data. Having
demonstrated the capacity of STdeconvolve to recover cell-type
proportions and transcriptional profiles in simulated ST data, we
next sought to evaluate the performance of STdeconvolve by
analyzing real 100 µm2 resolution ST data of the mouse main
olfactory bulb (MOB)22. The MOB consists of multiple bilaterally
symmetric and transcriptionally distinct cell layers due to topo-
graphically organized sensory inputs23. While previous clustering
analysis of ST data of the MOB revealed coarse spatial organi-
zation of coarse cell layers, finer structures such as the rostral
migratory stream (RMS) could not be readily observed (Supple-
mentary Fig. S6A, B). We applied STdeconvolve to identify
K= 12 cell types (Fig. 4a, Supplementary Fig. S6C, Supplemen-
tary Methods) that either overlapped with or further split coarse
cell layers previously identified from clustering analysis (Supple-
mentary Fig. S6D). In particular, deconvolved cell-type X7
overlapped with the granule cell layer previously identified from
clustering analysis and was spatially placed where the RMS is
expected24 (Fig. 4b). Upregulated genes in its deconvolved tran-
scriptional profile, including Nrep, Sox11, and Dcx, are known to
be associated with neuronal differentiation and upregulated in
neuronal precursor cells within the RMS25 (Fig. 4c,

Supplementary Fig. S6E). Higher resolution ISH staining of these
genes further demarcates a region within the granule cell layer
where the RMS is expected19 (Fig. 4d). This suggests that
deconvolved cell-type X7 may correspond to the neuronal pre-
cursor cell-type within the RMS unidentified from clustering
analysis.

To further evaluate the biological reproducibility of decon-
volved cell types, we applied STdeconvolve independently to 3
additional biological replicates of ST data of the MOB
(Supplementary Methods). In each biological replicate, STdecon-
volve consistently identified approximately 12 cell types (Supple-
mentary Fig. S7A). Transcriptional profiles between deconvolved
cell types were also highly correlated across biological replicates
(Supplementary Fig. S7B–D). This suggests that STdeconvolve
can reliably deconvolve consistent cell types, even across
biological replicates.

As noted previously using simulated ST data, the performance
of reference-based deconvolution approaches is sensitive to
differences in cell-type composition between the single-cell
transcriptomics reference and the ST data to be deconvolved.
To demonstrate this with real ST data, we first compared
STdeconvolve and reference-based deconvolution approaches
using an appropriate MOB scRNA-seq reference26 (Supplemen-
tary Methods). We found strong correlations between cell-type
proportions estimated by STdeconvolve and the evaluated
reference-based deconvolution approaches with a high degree of
correspondence among all evaluated methods (Supplementary
Fig. S8A, B). Notably, the proportion and transcriptional profile
of deconvolved cell-type X8 identified by STdeconvolve to be
enriched in the olfactory nerve layer correlated strongly with the
proportion of olfactory ensheathing cells (OECs) identified by
reference-based deconvolution approaches.

Next, to simulate a less suitable scRNA-seq reference, we
removed OECs from the MOB scRNA-seq reference and again
evaluated the performance of reference-based deconvolution
approaches given this new scRNA-seq reference without OECs
(Supplementary Methods). Again, as a reference-free deconvolu-
tion approach, the results of STdeconvolve do not change.
However, for some reference-based deconvolution approaches,
given this new reference without OECs, pixels in the olfactory
nerve layer previously comprised of OECs were now predicted to
be comprised of N2 cells (Supplementary Fig. S9A). Although we
do not know the ground truth cell-type composition of this
olfactory nerve layer, we have reasons to believe that this
placement of N2 cells is erroneous. First, when a scRNA-seq
reference with OECs was used, reference-based deconvolution
approaches generally estimated N2 cells to be relatively rare.
However, when a scRNA-seq reference without OECs was used,
these reference-based deconvolution approaches substantially
increased their estimated abundance of N2 cells (Supplementary
Fig. S9B). Second, while the transcriptional profiles of OECs and
N2 cells are highly correlated (Supplementary Fig. S9C), the two
cell types exhibit significant transcriptionally differences. For
example, top differentially upregulated genes in OECs are highly
expressed in the olfactory nerve layer (Supplementary Fig. S8C)
whereas top differentially upregulated genes in N2 cells are not
well detected in the olfactory nerve layer (Supplementary
Fig. S9D). This lack of detection of N2 cell marker genes within
the olfactory nerve layer coupled with the rarity of N2 cells in the
original reference-based deconvolution with OECs suggests that
the placement of N2 cells in the olfactory nerve layer by
reference-based deconvolution approaches when using a refer-
ence without OECs is erroneous.

Further, a single-cell transcriptomics reference may not always
exist for the same tissue from which ST data was generated,
prompting the use of a reference from a related but inherently
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different tissue source. To evaluate the potential effect of using a
single-cell transcriptomics reference from a different tissue source
on reference-based deconvolution approaches, we sought to
deconvolve the MOB ST data using the scRNA-seq reference
from the mouse brain described previously. Given this mouse
brain reference, pixels in the olfactory nerve layer previously
comprised of OECs were now predicted to be comprised of
vascular leptomeningeal cells (VLMC) (Supplementary Fig. S10A).
Again, although we do not know the ground truth cell-type
composition of this olfactory nerve layer, top differentially
upregulated genes in VLMCs are not well detected in the MOB
(Supplementary Fig. S10B) and are therefore likely not truly
present. Taken together, all this suggests that reference-based
deconvolution approaches are sensitive to the cell types
represented in the single-cell transcriptomics reference that is
used, which may lead to inaccurate results and spurious cell-type
assignments when a suitable reference is not available.

STdeconvolve is applicable across diverse ST dataset resolu-
tions and technologies. We anticipate that continual technolo-
gical improvements will enhance the resolution of ST data.

Already, ST technologies such as Visium (10X Genomics), Slide-
seq27, and DBiT-seq28 have achieved resolution that can range
from 50 µm2 to 10 µm2. Therefore, we sought to evaluate the
performance of STdeconvolve on higher resolution ST data using
both simulated as well as real ST data from higher resolution ST
technologies including Visium, Slide-seq, and DBiT-seq.

First, to simulate higher resolution ST data, we again
aggregated single-cell resolution MERFISH data of the MPOA
into 50, 20, and 10 µm2 resolution pixels. Applying STdecon-
volve, we observed similarly strong correlations between the
deconvolved cell-type transcriptional profiles and proportions
with the ground truth (Supplementary Fig. S11A–D). Although
the number of cells in each multi-cellular pixel did decrease as the
resolution of the pixel increased as expected, we note that even
higher resolution pixels may still contain multiple cells represent-
ing multiple cell types (Supplementary Fig. S11E, F). Thus,
deconvolution may still be applicable to higher resolution ST data
and STdeconvolve can still accurately deconvolve cell types within
these higher resolution multi-cellular pixels.

Encouraged by STdeconvolve’s ability to recover cell types in
simulated high-resolution ST data, we then applied STdeconvolve
to real high-resolution multi-cellular ST data from several
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different technologies. First, we applied STdeconvolve to 50 µm2

resolution ST data of a coronal section of the mouse brain from
10X Visium. Briefly, for 10X Visium, mRNAs from tissue sections
are captured onto an array of DNA barcoded spots, resulting in
RNA-sequencing measurements with gridded 2D spatial posi-
tional information. We applied STdeconvolve to identify K= 20
cell types that exhibit spatially distinct patterns that demarcate
known brain structures such as the isocortex and fiber tracts
(Fig. 4e, Supplementary Fig. S12, Supplementary Methods).

We next applied STdeconvolve to 25 µm2 resolution ST data of
the lower body of the E11 mouse embryo from DBiT-seq. Briefly,
for DBiT-seq, parallel microfluidic channels are used to deliver
DNA barcodes to the surface of a tissue to enable direct barcoding
of mRNAs in situ, resulting in RNA-sequencing measurements in
a 2D mosaic of spatial pixels. Previously, the authors identified 13
transcriptionally and spatially distinct features in the E11 mouse
embryo including the atrium, ventricle, liver, and blood vessels
containing erythrocyte coagulation. Applying STdeconvolve with
K= 13, we identify deconvolved cell types that corresponded with
similar spatially distinct features in agreement with the original
findings (Fig. 4f, Supplementary Fig. S13A, Supplementary
Methods). Moreover, the top genes in the deconvolved cell-
type-specific transcriptional profiles contained the expected
marker genes of the matching features, such as Myh6 for the
atrium, Myh7 for the ventricle, Apoa2 for the liver, and Hba.a2
for the blood vessels containing erythrocyte coagulation in
agreement with the original findings (Supplementary Fig. S13B).

Finally, we applied STdeconvolve to 10 µm2 resolution ST data
of the mouse cerebellum from Slide-seq. Briefly, for Slide-seq,
mRNAs from tissue sections are captured onto densely packed
barcoded beads, resulting in RNA-sequencing measurements with
2D spatial positional information. Previously, RCTD was also
applied to this Slide-seq dataset with a matched Drop-seq scRNA-
seq reference of the mouse cerebellum29 to identify beads
representing a distinct layers of Purkinje neurons and Bergmann
glia. Applying STdeconvolve, we identified K= 14 cell types
(Fig. 4g, Supplementary Methods) whose transcriptional profiles
correlated strongly with cell types from the scRNA-seq dataset of
the mouse cerebellum (Supplementary Fig. S14A). In particular,
we found that the deconvolved transcriptional profiles of cell-type
X4 and cell-type X2 correlated strongly with the transcriptional
profiles of Purkinje neurons and Bergmann glia. Likewise, the
deconvolved proportional representation of cell-type X4 and cell-
type X2 also agreed significantly (Fisher’s Exact p value < 2.2 ×
10−16) with the predicted proportions of Purkinje neuron and
Bergmann glia from RCTD (Supplementary Fig. S14B, C). Taken
together, these results indicate that STdeconvolve can be
applicable to a range of multi-cellular resolution ST technologies.

As the resolution of ST data improves, the number of spatially
resolved pixels and cell types represented in the data will
presumably also increase. We therefore sought to evaluate the
scalability of STdeconvolve in anticipation of these increasingly
larger datasets. To this end, we benchmarked the runtime and
total memory usage by STdeconvolve when deconvolving varying
numbers of cell types using varying numbers of genes across
varying numbers of pixels (Methods). We found that both the
runtime and memory usage by STdeconvolve increased linearly
with the number of pixels and genes in the input dataset
(Supplementary Fig. S15A) and is comparable to existing
reference-based deconvolution methods when applied to current
ST datasets5. Likewise, runtime scales with the number of
deconvolved cell types K in the input dataset though memory
usage remains stable (Supplementary Fig. S15B). To enhance
runtime efficiency, STdeconvolve has built in parallelization. In
this manner, we anticipate that STdeconvolve will be amenable to
larger ST data.

STdeconvolve identifies immune infiltrates in breast cancer.
Finally, to demonstrate the potential of an unsupervised,
reference-free deconvolution approach, we applied STdeconvolve
to 100 µm2 resolution ST data of 4 breast cancer sections30. Here,
a matched scRNA-seq reference was not available and using a
scRNA-seq reference from another breast cancer sample may be
inappropriate due to potential inter-tumoral heterogeneity31.
Transcriptional clustering of the ST pixels previously identified 3
transcriptionally distinct clusters that corresponded to 3 histo-
logical regions of the tissue: ductal carcinoma in situ (DCIS),
invasive ductal carcinoma (IDC), and non-malignant30 (Fig. 5a,
Supplementary Fig. 16A, B). However, the tumor microenviron-
ment is a complex milieu of many additional cell types32. We thus
applied STdeconvolve to identify potential additional cell types
and interrogate their spatial organization, resulting in K= 15
identified cell types (Fig. 5b, Supplementary Fig. S16C, Supple-
mentary Methods). Of these, deconvolved cell types X3 and X13
pixel proportions corresponded spatially with pixels annotated as
the non-malignant and DCIS regions, respectively (Supplemen-
tary Fig. S16D). Likewise, the deconvolved expression profiles for
X3 and X13 included KRT1, a keratin gene specifically expressed
in mammary myoepithelial cells33, and PRSS23, a serine protease
associated with proliferation of breast cancer cells34, respectively,
consistent with the non-malignant and DCIS annotations (Sup-
plementary Fig. S17). Interestingly, the deconvolved expression
profile for cell-type X15 included immune genes such as CD74
and CXCL10 (Fig. 5c–e, Supplementary Fig. S18). Gene set
enrichment analysis also suggested that genes in the deconvolved
expression profile for cell-type X15 are significantly enriched in
immune processes such as T cell activation (Supplementary
Data 1, Supplementary Methods). This suggests that deconvolved
cell-type X15 may correspond to immune infiltrates. Further, we
find a significant the number of pixels with a high proportion of
deconvolved cell-type X15 corresponding to IDC regions (Fisher’s
exact p value = 0.001257) based on previous clustering and
pathology annotations. In contrast, we do not see a significant
number of pixels with a high proportion of deconvolved cell-type
X15 corresponding to DCIS regions (Fisher’s exact p value =
0.5625). This is consistent with previous observations that when
comparing pure DCIS and IDC, infiltration of immune cells was
significantly higher in IDC to pure DCIS35,36.

The spatial organization of immune cells within tumors has
been previously implicated to be relevant in breast cancer
prognosis37. In particular, whether immune cells are infiltrated
or excluded from the tumor is associated with tumor micro-
environments that stratify patient outcomes38. To evaluate
whether STdeconvolve may be able to distinguish infiltrated
versus excluded spatial organization of immune cells in tumors,
we simulated ST data representing infiltrated and excluded spatial
organizations using mixtures of single cells assayed by scRNA-seq
(Fig. 5f, Supplementary Methods). In both the simulated
infiltrated and excluded cases, we find that STdeconvolve can
effectively recover the cell-type transcriptional profiles (Fig. 5g)
and enable the quantification of immune infiltration to help
distinguish between infiltrated versus excluded spatial organiza-
tion of immune cells (Fig. 5h). Therefore, we anticipate that
STdeconvolve may be able to assist in deconvolving cell types in
heterogeneous cancer tissues to recover potentially clinically
interesting spatial organizational patterns.

Discussion
Multi-cellular pixel-resolution ST technologies have enabled
high-throughput transcriptomic profiling of small mixtures of
cells within tissues but accurate identification of the underlying
cell types within each pixel is critical for elucidating cell-type-
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specific spatial organizational patterns and gene expression
variation. Although several deconvolution methods have
already been developed to address this challenge, they currently
rely on suitable single-cell transcriptomics references. As we
have shown, this reliance on single-cell transcriptomics refer-
ences constrains the spatial mapping of cell types to those in the
reference, which may present limitations if there are missing
cell types, mismatched cell types, perturbations, and batch effect
differences between the single-cell transcriptomics reference
and ST data to be deconvolved. Here, we have presented
STdeconvolve, a reference-free computational approach to
deconvolve cell-type proportions and their transcriptional
profiles in multi-cellular pixel-resolution ST data. We have

demonstrated that STdeconvolve can accurately recover
underlying cell-type proportions and their transcriptional pro-
files across a range of different ST technologies and resolutions.
STdeconvolve further provides competitive performance to
reference-based deconvolution approaches when an ideal
single-cell transcriptomics reference is available and potentially
better performance in more realistic circumstances where such
an ideal reference is not available. Additionally, we showed the
advantage of deconvolution over clustering-based analysis
methods to interrogate heterogeneous mixtures of cell types.
Likewise, using simulated ST data of aged-perturbed tissues, we
showed that STdeconvolve can recover perturbation-driven cell-
type-specific gene expression changes. Finally, we applied
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Fig. 5 STdeconvolve characterizes the spatial organization of immune cells in real and simulated breast cancer ST data. a An H&E-stained image of the
breast cancer tissue with pathological annotations adapted from Yoosuf et al.30. b Deconvolved cell-type pixel proportions for ST data of a breast cancer
tissue section, represented as pie charts. Pixels are outlined with colors based on the pixel transcriptional cluster assignment corresponding to 3
pathological annotations. c Highlight of deconvolved cell-type X15. Pixel proportion of deconvolved cell-type X15 are indicated as black slices in pie charts.
Pixels are outlined with colors as in (b). Select genes corresponding cell-type X15’s select top marker genes are shown. d Barplot of the deconvolved
transcriptional profile of cell-type X15 ordered by magnitude. Inset represents the log2 fold-change of the deconvolved transcriptional profile of cell-type
X15 with respect to the mean expression of the other 14 deconvolved cell-type transcriptional profiles. Select highly expressed and high fold-change genes
are labeled. e Gene set enrichment plot for significantly enriched GO term “T cell activation” for deconvolved cell-type X15. f Simulated ST datasets of an
immune-excluded tumor sample (top) and immune-infiltrated tumor sample (bottom) using mixtures of single cells represented as pie charts for each
simulated ST pixel. g Deconvolution results for the simulated ST data by STdeconvolve. The ranking of each gene based on its expression level in the
deconvolved-cell-type transcriptional profiles compared to its gene rank in the matched ground truth cell-type transcriptional profiles for the simulated
immune-excluded tumor sample (top) and immune-infiltrated tumor sample (bottom). h Histogram of the deconvolved proportion of immune cells in the
tumor region defined in (f) for the simulated immune-excluded tumor sample (top) and immune-infiltrated tumor sample (bottom).
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STdeconvolve to identify putative immune infiltration in real
and simulated breast cancer ST data.

Though we have shown that STdeconvolve can effectively
recover cell-type proportions and transcriptional profiles in
simulated and real ST data, its use of LDA modeling relies on
several underlying assumptions, which may present limitations
when these assumptions are not satisfied. Notably, the perfor-
mance of LDA in accurately deconvolving cell types depends on
the size of the dataset with respect to the number of pixels and the
number of genes39. As such, deconvolution accuracy generally
decreases for ST data containing fewer than 10 pixels (Supple-
mentary Fig. S19). While we have generally found the number of
pixels in most ST datasets to be well beyond 10 pixels after quality
control filtering, the application of ST to profile tissue slivers or
other thin structures covering only a few pixels may present
challenges to deconvolution by STdeconvolve. Further, LDA
modeling attempts to identify tightly occurring, and ideally non-
overlapping groups of genes in the pixels as cell types. In this
manner, if genes do not exhibit variability across pixels due to a
homogeneous or uniform proportional representation of cell
types across pixels (Supplementary Fig. S20), STdeconvolve may
fail to deconvolve transcriptionally distinct cell types. Likewise, if
the gene expression in the ST data is too sparse with high rates of
stochastic drop-outs40, then the LDA model may struggle to
identify distinct groups of co-expressed genes and as such
STdeconvolve may also struggle to deconvolve transcriptionally
distinct cell types as well. Still, when such failures happen,
STdeconvolve will indicate to users when distinct cell types
cannot be adequately deconvolved.

Although we have demonstrated the applicability of STde-
convolve to current high-resolution multi-cellular pixel resolution
ST data, as the resolution of ST data continues to increase, sub-
cellular pixel-resolution ST technologies will also become more
accessible. Already, a number sub-cellular pixel-resolution ST
technologies have emerged41–45. As the capture efficiency at this
resolution and likewise the biological questions of interest may
differ substantially from multi-cellular ST data, we anticipate that
new methods specifically suited for sub-cellular resolution ST
data will be needed. Thus, STdeconvolve may not be best suited
for analysis of such sub-cellular resolution ST data. Still, as we
have noted previously, even as the resolution of ST data increases,
some pixels may still contain multiple cells representing multiple
cell types, suggesting that deconvolution may still be necessary.
Likewise, the number of cells present in a pixel ultimately will
depend on cell size, which can vary depending on the organism,
tissue, and/or disease state being profiled. Ultimately, we believe
that there will be a need to balance between resolution and
throughput of ST technologies depending on the biological
question of interest. The potentially larger tissue regions able to
be covered by multi-cellular pixel resolution ST data may still be
of interest and thus still require deconvolution. We anticipate that
STdeconvolve will be applicable to data from a variety of current
and future ST technologies as well as potentially inferred ST
data46 to reveal cell-type-specific spatial organizational patterns
and transcriptional changes. In general, we foresee that reference-
free deconvolution approaches such as STdeconvolve will con-
tribute to the interrogation of the spatial relationships between
transcriptionally distinct cell types in heterogeneous tissues.

Methods
STdeconvolve overview. STdeconvolve uses LDA47, a generative probabilistic
model, to deconvolve the latent cell types contained within multi-cellular pixels of
spatially resolved transcriptome (ST) measurements. In this context, each pixel is
defined as a mixture of K cell types represented as a multinomial distribution of
cell-type probabilities (θ), and each cell type is defined as a probability distribution
over the genes (β) present in the ST dataset.

LDA modeling. The ST dataset is represented as a D × N matrix of discrete gene
expression counts for each pixel d and gene n. The total number of unique
molecules, or total gene expression, in a given pixel d is Md.

As a generative probabilistic model, the LDA model generates a set of new
pixels as follows:

For each pixel d∈ [1:D]:

a. draw a cell-type distribution θd ~ Dir (α), where θd is a multinomial
distribution of length K drawn from a uniform Dirichlet distribution with
scaling parameter α.

b. for each observed molecule m in Md:

i. draw a cell-type assignment zd;m � multðθdÞ 2 ½1 :K�
ii. based on this cell-type assignment, draw a gene

wd;m � multðβzd;m Þ 2 ½1 :N�
The central goal is to identify the posterior distribution of the latent parameters,

θ and β, given the input data, i.e., the observed gene expression in the ST dataset.
For each pixel d, the posterior distribution is defined as:

p θd ; zjw; α; β
� � ¼ p θd ; z; w jα; β� �

p w jα; β� � ð1Þ

where z is the vector of Md cell types assigned to each unique molecule in pixel d,
and w is the vector of Md genes assigned to each molecule in pixel d. A variational
expectation-maximization approach is used to estimate the values of the latent
parameters47,48. Multiplying the marginal probabilities of the individual pixels
gives the probability of the entire ST dataset. By default, β is initialized with 0 for all
cell types and genes, and α as 50/K.

The resulting estimated θ and βmatrices represent the deconvolved proportions
of cell types in each pixel and the gene expression profiles for each cell type, scaled
to a library size of 1. β represents a K × N gene-probability (i.e., expression) matrix
for each cell type k and each gene n with each row summing to 1. The β matrix can
be multiplied by a scaling factor of one million to be more like conventional
counts-per-million expression values for interpretability. θ represents a D × K
pixel-cell-type proportion matrix for each pixel d and each cell type k. LDA
modeling in STdeconvolve is implemented through the ‘topicmodels’ R package48.

Of note, LDA assumes for each cell type that there is a group of genes highly co-
expressed with high probability. Therefore, STdeconvolve selects for genes more
likely to be highly co-expressed within cell types, which can improve cell-type
deconvolution.

Selection of genes for LDA model. Latent cell types are best discovered by LDA
modeling if cell-type-specific marker genes are included in the input ST data while
genes whose expression is shared across cell types are excluded. Therefore, to filter
for genes that are more likely to be specifically expressed in particular cell types to
improve cell-type deconvolution by LDA, STdeconvolve first removes genes that
are not detected in a sufficient number of pixels. By default, genes detected in less
than 5% of pixels are removed. Likewise, STdeconvolve also removes genes that are
expressed in all pixels. By default, genes detected in 100% of pixels are removed.
STdeconvolve then selects for significantly overdispersed genes, or genes with
higher-than-expected expression variance across pixels, as a means to detect
transcriptionally distinct cell types14. We assume that the proportion of cell types
will vary across pixels and thus differences in their cell-type-specific transcriptional
profiles manifest as overdispersed genes across pixels in the dataset.

If there are too many genes included in the input ST data, LDA may also
struggle to identify non-overlapping clusters composed of distinct combinations of
co-expressed genes. In these circumstances, users may modulate the number of
informative genes included in the input matrix to ensure LDA convergence. By
default, only the top 1000 most overdispersed genes are retained in the input ST
data because we note that deconvolution accuracy in general stabilizes for larger
numbers of informative features (Supplementary Fig. S22).

Additional gene filtering or cell-type-specific marker genes to include in the
input ST data may also be augmented by the user.

Selection of LDA model with optimal number of cell types. The number of cell types
K in the LDA model must be chosen a priori. To determine the optimal number of
cell types K to choose for a given dataset, we fit a set of LDA models using different
values for K over a user defined range of positive integers greater than 1. We then
compute the perplexity of each fitted model:

Perplexity Dð Þ ¼ exp � log p Dð Þ� �

∑
D

d¼1
∑
N

n¼1
cd;n

8>><
>>:

9>>=
>>;

ð2Þ

where p(D) is the likelihood of the dataset and cd,n is the gene count, or expression
level, of gene n in pixel d. We can interpret p(D) as the posterior likelihood of the
dataset conditional on the cell-type assignments using the final estimated θ and β.
The lower the perplexity, the better the model represents the real dataset. Thus, the
trend between choice of K and the respective model perplexity can then serve as a
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guide. By default, the perplexity is computed by comparing p(D) to the entire input
dataset used to estimate θ and β.

In addition, STdeconvolve also reports the trend between K and the number of
deconvolved cell types with mean pixel proportions <5% (as default). We chose this
default threshold based on the difficulty of STdeconvolve and reference-based
deconvolution approaches to deconvolve cell types at low proportions, (i.e., “rare”
cell types) (Supplementary Note 2). We note that as K is increased for fitted LDA
models, the number of such “rare” cell types generally increases. Such rare
deconvolved cell types are often distinguished by fewer distinct transcriptional
patterns in the data and may represent non-relevant or spurious subdivisions of
primary cell types. We can use this metric to help set an upper bound on K.

Generally, perplexity decreases and the number of “rare” deconvolved cell types
increases as K increases. Given these model perplexities and number of “rare”
deconvolved cell types for each tested K, the optimal K can then be determined by
choosing the maximum K with the lowest perplexity while minimizing number of
“rare” deconvolved cell types. To further guide the choice of K, an inflection point
(“knee”) is derived from the maximum second derivative of the plotted K versus
perplexity plot and K versus number of “rare” deconvolved cell types.

Still, for a given K, the fitted LDA model may fail to identify distinct cell types
e.g., the distribution of cell-type proportions in each pixel is uniform. In such a
situation, the Dirichlet distribution shape parameter α of the LDA model will be ≥1
and STdeconvolve will indicate to the user that the fitted LDA model for a
particular K has an α above this threshold by graying out these Ks in the trend plot.

Ultimately, the choice of K is left up to the user and can be chosen taking into
consideration prior knowledge of the biological system.

Simulating ST data from single-cell resolution spatially resolved MERFISH
data. MERFISH data of the mouse medial preoptic area (MPOA) was obtained
from the original publication15. Normalized gene expression values were converted
back to counts by dividing by 1000 and multiplying by each cell’s absolute volume.
Datasets for an untreated female animal containing counts for 135 genes assayed by
MERFISH were used. Genes with non-count expression intensities assayed by
sequential FISH were omitted. Counts of blank control measurements were also
removed. Cells were previously annotated as being one of 9 major cell types
(astrocyte, endothelial, microglia, immature or mature oligodendrocyte, ependy-
mal, pericyte, inhibitory neuron, excitatory neuron). Cells originally annotated as
“ambiguous” were removed from the dataset to ensure the ground truth was
composed of cells with distinguishable cell types. Because certain cell types may be
enriched in specific regions of the MPOA, we combined 12 tissue sections across
the anterior and posterior regions to ensure that all expected cell types would be
well represented in the final simulated ST dataset. After filtering, the final dataset
contained 59651 cells representing 9 total cell types and counts for the 135 genes.

To simulate a multi-cellular pixel resolution ST dataset from such single-cell
resolution spatially resolved MERFISH data, we generated a grid of squares, each
square with an area of 100 µm2. Each square was considered a simulated pixel and
the gene counts of cells whose x–y centroid was located within the coordinates of a
square pixel were summed together. A grid of square pixels was generated for each
of the 12 tissue sections separately and the simulated pixels for all 12 tissue sections
were subsequently combined into a single ST dataset. For a given tissue section, the
bottom edge of the grid was the lowest y-coordinate of the cell centroids and the
left edge of the grid was the lowest x-coordinate. Square boundaries were then
drawn from each of these edges in 100 µm2 increments until the position of the
farthest increment from the origin was greater than the highest respective cell
centroid coordinate. After generating the grid, square pixels whose edges formed
one of the outside edges of the grid were discarded in order to remove simulated
pixels, which by virtue of their placement, encompassed space outside of the actual
tissue sample. The retained pixels covered 49,142 out of the original 59651 cells in
the 12 tissue sections. This resulted in a simulated ST dataset with 3072 pixels by
135 genes. We used the original cell type labels of each cell to compute the ground
truth proportions in each simulated pixel. Likewise, to generate the ground truth
transcriptional profiles of each cell type, we averaged the gene counts for cells of the
same cell type from the original 59,651 cells and normalized the resulting gene
count matrix to sum to 1 for each cell type. To simulate pixels of 50, 20, and 10
µm2, an identical approach was taken using the same cells except those square
boundaries were drawn from each edge in 50, 20, or 10 µm2 increments.

Annotation and matching of deconvolved and ground truth cell types. Each
deconvolved cell type was first matched with the ground truth cell type that had the
highest Pearson’s correlation between their transcriptional profiles. This was done
by computing the Pearson’s correlation between every combination of deconvolved
and ground truth cell-type transcriptional profiles.

The assignment of deconvolved cell types to ground truth cell types was
confirmed by testing for enrichment of differentially upregulated genes of the
ground truth cell types in the deconvolved cell-type transcriptional profiles. To
determine the differentially upregulated genes of the ground truth cell types,
ground truth transcriptional profiles were converted to counts per thousand and
low expressed genes, defined as those with average expression values less than 5,
were removed. For each ground truth cell type, the log2 fold change of each
remaining gene with respect to the average expression across the other ground
truth cell types was computed. Differentially upregulated genes were those with

log2 fold-change >1. We performed rank-based gene set enrichment analysis of the
ground truth upregulated gene sets in each deconvolved cell-type transcriptional
profile using the ‘liger’ R package49. A match to a ground truth cell type was
confirmed and assigned if the ground truth gene set had the lowest gene set
enrichment adjusted p value that was at least <0.05, followed by the highest positive
edge score50, and then highest positive enrichment score to break ties.

Deconvolution of additional simulated and real ST data. Deconvolution of
simulated and real ST data using STdeconvolve in addition to deconvolution of
simulated and real ST data using supervised reference-based deconvolution
approaches with various single-cell transcriptomics references is further detailed in
Supplementary Methods.

Comparison of deconvolution approaches. How each supervised deconvolution
approach was run is further detailed in the Supplementary Methods. To compare
the performance between deconvolution methods, the RMSE was computed for
each pixel between the deconvolved and matched ground truth cell-type propor-
tions for each pixel in the ST dataset:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
K

k¼1
ðŷk � ykÞ2

K

vuuut ð3Þ

where K is the number of cell types, ŷk is the predicted cell-type proportion for
the cell type k, and yk is the ground truth cell-type proportion for the cell type k.
To assess whether the distribution of pixel RMSEs was significantly lower for
STdeconvolve compared to other methods, a one-sided Diebold–Mariano test51

was used.

Runtime and memory evaluation. Using the Visium dataset described in Supple-
mentary Methods ‘Deconvolution of 10X Visium data with STdeconvolve’, we gener-
ated an input ST dataset of 2702 pixels and feature selected for the top 1000 most
significant overdispersed genes. Runtime of STdeconvolve was measured on randomly
drawn subsets of input data. Five subsets are drawn with 2702 pixels and 50, 100, 200,
400, and 1000 genes, respectively. Another five subsets are drawn with the 1000 top
overdispersed genes and 50, 100, 200, 400, and 1000 pixels, respectively. All subsets are
deconvolved with cell type number (K) between 4 and 20 as input parameters.
Runtime was measured using the R package ‘microbenchmark’52 (v1.4–7). Memory
usage of STdeconvolve was measured using a similar sub-setting procedure and the R
package ‘profmem’53 (v0.6.0). Total memory allocation wasmeasured, which provides
an upper bound for peak memory usage. Runtime and memory analyses were run on
a machine with i7-6600U 2.60GHz CPU with 8GM of RAM.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Cell centroid coordinates, gene counts, and metadata of the MERFISH dataset of the
mouse medial preoptic area15 are available for download at https://datadryad.org/stash/
dataset/doi:10.5061/dryad.8t8s248/. Cell volume data for animal FN7, datasets
171021_FN7_2_M22_M26 and 171023_FN7_1_M22_M26, was also obtained from the
original authors. Cell centroid coordinates, gene counts, and metadata of Slice 2, replicate
1 of the MERFISH dataset of the mouse coronal section of the cortex are available as part
of the Vizgen Data Release V1.0. May 2021 https://info.vizgen.com/mouse-brain-data.
Gene count matrices and H&E images for all MOB replicates are available for download
at https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-
aaf2403/. Gene count matrices and H&E images for all breast cancer tissue replicates are
available for download at https://www.spatialresearch.org/resources-published-datasets/
doi-10-1126science-aaf2403/. 10X Visium data of the mouse coronal section of the cortex
(V1_Adult_Mouse_Brain - Adult Mouse Brain (Coronal)) available for download at
https://www.10xgenomics.com/resources/datasets/mouse-brain-section-coronal-1-
standard-1-1-0. DBiT-seq dataset of E11 mouse embryo lower body (GSM4364242_E11-
1L) gene count matrices available for download at https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE137986. Slide-seq of the mouse cerebellum (Puck_180819_12)
available for download at https://singlecell.broadinstitute.org/single_cell/study/SCP354/
slide-seq-study#study-download. Single-cell gene count matrices and cell metadata used
in simulations available for download at https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE150580. scRNA-seq data of the mouse olfactory bulb26 available for
download at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121891. Drop-seq
single-cell RNA-seq of mouse cerebellum available for download at http://dropviz.org/.

Code availability
STdeconvolve is available as an open-source R software package54 with the source code
available as Supplemental Software and on GitHub at https://github.com/JEFworks-Lab/
STdeconvolve. Additional documentation, instructions to generate the minimum

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30033-z ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:2339 | https://doi.org/10.1038/s41467-022-30033-z | www.nature.com/naturecommunications 11

https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248/
https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248/
https://info.vizgen.com/mouse-brain-data
https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-aaf2403/
https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-aaf2403/
https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-aaf2403/
https://www.spatialresearch.org/resources-published-datasets/doi-10-1126science-aaf2403/
https://www.10xgenomics.com/resources/datasets/mouse-brain-section-coronal-1-standard-1-1-0
https://www.10xgenomics.com/resources/datasets/mouse-brain-section-coronal-1-standard-1-1-0
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137986
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137986
https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study#study-download
https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study#study-download
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150580
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150580
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121891
http://dropviz.org/
https://github.com/JEFworks-Lab/STdeconvolve
https://github.com/JEFworks-Lab/STdeconvolve
www.nature.com/naturecommunications
www.nature.com/naturecommunications


datasets to reproduce the analyses, and tutorials are available at https://jef.works/
STdeconvolve/.
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