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Characterization of intratumoral heterogeneity is critical to cancer therapy, as the presence of phenotypically diverse cell
populations commonly fuels relapse and resistance to treatment. Although genetic variation is a well-studied source of intra-
tumoral heterogeneity, the functional impact of most genetic alterations remains unclear. Even less understood is the rel-
ative importance of other factors influencing heterogeneity, such as epigenetic state or tumor microenvironment. To
investigate the relationship between genetic and transcriptional heterogeneity in a context of cancer progression, we devised
a computational approach called HoneyBADGER to identify copy number variation and loss of heterozygosity in individual
cells from single-cell RNA-sequencing data. By integrating allele and normalized expression information, HoneyBADGER is
able to identify and infer the presence of subclone-specific alterations in individual cells and reconstruct the underlying
subclonal architecture. By examining several tumor types, we show that HoneyBADGER is effective at identifying deletions,
amplifications, and copy-neutral loss-of-heterozygosity events and is capable of robustly identifying subclonal focal alter-
ations as small as 10 megabases. We further apply HoneyBADGER to analyze single cells from a progressive multiple my-
eloma patient to identify major genetic subclones that exhibit distinct transcriptional signatures relevant to cancer
progression.Other prominent transcriptional subpopulations within these tumors did not line up with the genetic subclonal
structure and were likely driven by alternative, nonclonal mechanisms. These results highlight the need for integrative anal-
ysis to understand the molecular and phenotypic heterogeneity in cancer.

[Supplemental material is available for this article.]

Intratumor heterogeneity is a common feature across diverse can-
cer types. Dynamic changes among intratumoral subpopulations
over time and following therapy present a key challenge to current
standards of cancer treatment (Ding et al. 2012; Gerlinger et al.
2012; Shah et al. 2012; Wu 2012; Mroz et al. 2015). Genetic varia-
tion, such as copy number alterations, is a well-studied source of
intratumoral heterogeneity (Vogelstein et al. 2013; Melchor et al.
2014). The extent to which such alterations are able to drive tumor
development typically relies on specific expression dysregulation
of tumor cells.While some of the alterations have been tied to per-
turbations of known oncogenes and tumor suppressors, such as
MYC and TP53 (Sekiguchi et al. 2014; Glitza et al. 2015), the pro-
cess bywhichmany genetic alterations impact transcriptional pro-
cesses to drive disease progression and drug resistance, particularly
in combination, is not well understood (Lohr et al. 2014). In that
regard, the ability to examine the transcriptional states of geneti-
cally distinct intratumoral subclones would be helpful for evaluat-
ing the likely functional impact of associated subclonalmutations.

Such knowledge could help design rational strategies for develop-
ment of new treatments, identify cellular pathways responsible for
variable patient response or resistance to treatment, and improve
prognostic stratification and evaluation of therapeutic approaches
(Walker et al. 2014).

While some insights into the relationship between genetic
and transcriptional heterogeneity have been gained from bulk
analysis, further characterization on the single-cell level is needed
to more accurately dissect the pathway and regulatory features as-
sociated with distinct genetic subclones. Single-cell RNA-sequenc-
ing (scRNA-seq) methods can provide detailed information on the
transcriptional state of the cancer cells. However, integration with
genotypic information at the single-cell level is necessary to estab-
lish correspondence between transcriptionally distinct subpopula-
tions and genetic subclones. At the same time, simultaneous
unbiased assessment of DNA and RNA from an individual cell re-
mains challenging (Dey et al. 2015; Macaulay et al. 2015; Wang
et al. 2017).
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Computational approaches for bulk sequencing data detect
copy number variations (CNVs) based on consistent deviations
in read coverage as well as allelic imbalance within the region
(Wang et al. 2007; Boeva et al. 2012; Chen et al. 2013). In the con-
text of scRNA-seq, recent publications have used deviations in av-
erage expressionmagnitudewithin affected regions from a normal
tissue reference to illustrate the presence of chromosome-scale
CNVs (Patel et al. 2014; Tirosh et al. 2016). Likewise, analysis of al-
lelic imbalancemayalso be informative aboutCNVs in the context
of scRNA-seq. Here, we propose a computational approach called
HoneyBADGER to quantitatively infer the presence of subclone-
specific focal CNVand loss-of-heterozygosity (LOH) events in indi-
vidual cells using allele and expression information from scRNA-
seq data.

Results

Prevalence of monoallelic detection in scRNA-seq data
presents challenges
To evaluate whether sequence variant information available in the
RNA reads can be used to distinguish subclones, we first examined
the ability to detect single-nucleotide variants from scRNA-seq
data. By using whole-exome sequencing (WES) to identify hetero-
zygous single-nucleotide polymorphisms (SNPs) in the K562 cell
line, we evaluated the sensitivity of detecting such SNPs from
both bulk and single-cell RNA-seq K562 data (Fig. 1A). The average
sensitivity for detecting covered SNPs (three or more reads) in sin-
gle-cell data was only 0.34 compared with 0.76 for the bulk RNA-
seq data. Much of this difference can be attributed to the lower

read coverage in single-cell data. However, sensitivity remains sig-
nificantly lower even for well-covered SNPs (Fig. 1B). In such cases,
all of the detected transcript reads originate from only one of the
alleles. Like others, we find such monoallelic detection to be prev-
alent in scRNA-seq data (Deng et al. 2014; Borel et al. 2015; Wang
et al. 2017). Although the likelihood of observing both alleles gen-
erally increases with increasing level of gene expression, it remains
low even for highly expressed genes (Fig. 1B). The prevalence
of monoallelic detection—a consequence of transcriptional sto-
chasticity, sparse sampling of mRNA molecules, and subsequent
uneven amplification by the scRNA-seq protocols (Deng et al.
2014)—limits the confidence with which we can deduce the ab-
sence of a variant in a cell. This, together with the sparse coverage
characteristic of scRNA-seq data, suggests that joint statistical anal-
ysis of many of variant sites is necessary to achieve genotype clas-
sification of cells.

HoneyBADGER identifies CNVs in single cells
Contiguous regions of variant sites are affected by focal heterozy-
gous chromosomal deletions, amplifications, and LOH events in
a coordinated manner (Fig. 1C). For example, if many SNPs across
multiple genes within a putative deletion region are consistently
expressed from the same allele in a given cell, then the cell likely
harbors that deletion. Thus, joint analysis of heterozygous SNPs
encompassed by such regions can overcome the uncertainty of in-
dividual SNPs detection. However, the number of SNPs and their
associated read coveragemust be sufficient to rule out the possibil-
ity of such allelic imbalance being observed by chance because of
monoallelic detection. We therefore developed a hidden Markov
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Figure 1. Prevalence of monoallelic detection and sparse signals in scRNA-seq data. (A) Sensitivity of heterozygous SNP detection as a function of cov-
erage in single-cell and bulk RNA-seq data for the K562 cell line. Sensitivity was calculated as the proportion of sites that are called heterozygous in the RNA-
seq sample among the sites that were called heterozygous in the WES data. Error bars, SD. The coverage distribution (bottom) is shown for bulk and an
average of the individual cells. (B) Prevalence of monoallelic detection in scRNA-seq data. Lowly expressed genes are nearly exclusively detected in a mono-
allelic manner. The monoallelic detection rate generally goes down with expression magnitude; however, it remains high even for well-covered polymor-
phisms. Error bars, 95% confidence interval of the binomial proportions. (C) Lesser allele fraction profile visualizes patterns of allelic imbalance for germline
heterozygous SNPs identified from scRNA-seq. The dot plot illustrates coverage (size) and allele bias (color) for germline heterozygous SNPs (rows) detected
in different cells (columns). The bottom row designates genes with alternating color labels. Single cells commonly exhibit stretches of monoallelic detection
within genes, as noted by the same color dots. However, across genes in a single cell, both alleles can be observed, suggesting that both alleles are present.
In contrast, within a deletion region (right), single cells can only express from the nondeleted allele.
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model (HMM) integrated Bayesian approach for detecting CNVs
and LOHs from single-cell RNA-seq data (HoneyBADGER) to iden-
tify candidate CNV regions and perform joint statistical analysis of
multiple SNPs within these regions to achieve genotype classifica-
tion of cells (seeMethods). HoneyBADGER employs a Bayesian ap-
proach to quantify the posterior probability of a CNV in each cell
based on the observed allele ratios within the affected region, tak-
ing into consideration the expected prevalence of monoallelic
detection (Methods; Fig. 2).

As an initial step, HoneyBADGER identifies candidate CNV
regions by a recursive HMMapproach (Fig. 2). Briefly, the allele fre-
quency data are pooled across cells, and CNV-affected regions are
identified by theHMMbased on a consistent deviation of the allele
fraction of heterozygous variants away from the expected 0.5 allele
fraction. The presence of genetically distinct subpopulations—
such as mixture of tumor and microenvironment, or different tu-
mor subclones—decreases the sensitivity of the CNV detection
step and the accuracy of the identified CNV boundaries. To handle
such heterogeneous subpopulations, HoneyBADGER recursively
clusters cells by similarity of their smoothed lesser allele fraction
profile, where the lesser allele is defined as the allele that is less fre-
quently observed across our population of cells. In the presence of
a deletion, we expect to see persistent depletion of this lesser allele
across our population of cells harboring the deletion. Where can-
didate CNVs of interest are known based on genomic sequencing
or biological knowledge, such as common deletions spanning
TP53, this candidate CNV discovery step with HMM may be
skipped altogether.Wenote that the identity of the lesser allele im-
plies phasing of haplotypes across multiple genes, beyond the
phasing signal apparent from themonoallelic detectionwithin in-
dividual genes.

Then, for each candidate CNV region identified, Honey
BADGER evaluates the posterior probability that an individual
cell harbors the alteration based on observed patterns of allelic im-
balance using a Bayesian hierarchical framework (Methods; Fig. 2).
This second layer of evaluation protects against false positives
introduced in the HMM phase and takes into account potential
uncertainty in phasing by reassessing the identity of the lesser al-
lele using allele counts from individual cells rather thanpooled fre-
quencies. Based on the posterior probabilities for these deletions,
we then separate cells into genetic branches and recursively search
for additional subclonal alterations within each branch.

At a basic level, the analysis of CNV/LOH occurrence by
HoneyBADGER enables separation of tumor cells from karyotypi-
cally normal cells. To demonstrate HoneyBADGER, we first exam-

ined 44 cells from serial bone marrow (BM) biopsies of a multiple
myeloma (MM) patient. Twenty-three cells were analyzed from a
biopsy obtained at diagnosis (MM16) with an estimated 90% puri-
ty, and21 cellswere analyzed fromabiopsyobtained6mo later in a
minimal disease state after chemotherapy (MM16R) with an esti-
mated 10%purity based on SDC1+ (also known as CD138+) expres-
sion. By using known heterozygous SNPs from previous bulk
sequencing efforts, we identified multiple clonal whole-chromo-
some deletions (Fig. 3A,B). As expected due to the low purity in
sample MM16R, only five of 21 cells (24%) originating from
MM16R are inferred to be tumor cells, harboring all of the identi-
fied CNVs with high posterior probability (Fig. 3C). Similarly, 22
out of 23 cells (96%) originating fromMM16 are inferred to be tu-
mor. Thus, the percentage of putative normal and MM cells in
MM16 and MM16R are consistent with bulk purity estimates. We
validate identified deletions using FISH and cytogenetics (Fig.
3D) and bulk WES (Fig. 3E).

HoneyBADGERcan further resolve focalCNVspreviously that
are not detectable by expression-based karyotyping approaches
(Patel et al. 2014). By using scRNA-seq data from Patel et al.
(2014), we applied HoneyBADGER to examine 65 glioblastoma
(GBM) cells mixed with 10 normal cells from patient MGH31.
We tookadvantageof the contaminationofnormal cells to identify
heterozygous SNPs without reliance on additional sequencing
data, such as WES. Briefly, we pooled all single cells fromMGH31
and identified sites exhibitingmultiple alleles. To avoid somatic al-
terations, we restricted SNP sites to known common popula-
tion SNPs (MAF > 10%) from the ExAC database (Lek et al. 2016).
HoneyBADGER recovers known deletions on Chromosomes (Chr)
10, 13, and 14 (Supplemental Fig. 1A,B). Furthermore, it identifies
an additional focal deletion (15Mb) onChr 19with equal clonality
to the deletion on Chr 10 (Supplemental Fig. 1A–C; Supplemental
Table 1). Given the relatively small size of this deletion, it couldnot
be detected using expression-based karyotyping (Supplemental
Fig. 1D), highlighting increased sensitivity of the allele-based ap-
proach. We note that even without the presence of karyotypically
normal cells to assist with the identification of heterozygous SNPs,
our approach is still able to identify clonal deletions based on a sig-
nificant depletion of common heterozygous SNPs from the ExAC
database on Chr 10 compared with other regions of comparable
size and gene density (Supplemental Fig. 2A,B).

To assess the performance of HoneyBADGER on CNVs of
varying size and clonality, we simulated deletions of varying size
and clonality by inserting fragments of known deletions into
CNV-neutral regions in MGH31 (see Methods). These simulations

Figure 2. Overview of HoneyBADGER. CNVs and LOHs are identified from scRNA-seq data in the following seven steps: (1) Cells are first clustered on
smoothed lesser-allele frequencies; (2) cells are split into twomain groups and pooled; (3) a hiddenMarkovmodel on the pooled lesser-allele fraction iden-
tified regions with potential CNVs or LOHs; (4) a Bayesian hierarchical model assessed the posterior probability of a CNV or LOH for each region in each cell;
(5) cells are clustered by their posterior probabilities of CNV or LOH for each region; (6) cells are split into putative subclones; and (7) the approach is re-
cursively applied to each subclone until no new subclones can be detected.
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suggest that HoneyBADGER can accurately identify and resolve
clonal deletions as small as 10 Mb in size (Fig. 4A), as well as chro-
mosome-arm-level subclonal deletions present in as few as 30% of
cells (Fig. 4B; Supplemental Fig. 2C,D).

While the benchmarks thus far have focused on full-tran-
script-coverage scRNA-seqdataproducedusing the Smart-seq2pro-
tocol (Picelli et al. 2014), newer droplet microfluidic protocols that
sequence only the 3′-end of transcripts are becoming increasingly
common (Klein et al. 2015;Macosko et al. 2015). To assess the util-
ity of our allele-based approach with such protocols, we analyzed
acutemyeloid leukemia (AML)BMmononuclear cellsmeasuredus-
ing 10× chromium, taken fromapatient (AML035) before and after
hematopoietic stem cell transplant (HSCT) (Zheng et al. 2017).
Without a WES reference, we again leveraged common heterozy-
gous variants from ExAC to identify potential heterozygous vari-
ants from pre- and post-HSCT samples. The increased number of
cells enhances our ability to identify heterozygous SNPs. However,
compared with the Smart-seq2, we were able to identify less than
half as many SNPs in the 10× chromium data (Supplemental Fig.
3A). Performance simulations show that with such 3′-tag data,
the allele-based approach will be able to detect full chromosome

and chromosome-arm-level alternations but will be substantially
limited in identifying more focal alterations (Supplemental Fig.
3B). While we were not able to identify any such large-scale copy
number alterations in the AML sample (Supplemental Fig. 3C,D),
when both pre- and post-HSCT samples were examined together,
the allele-based approach clearly identified allelic patterns indica-
tive of the presence of two distinct genotypes (Supplemental Fig.
3E). Consistent with observations from the original publication
(Zheng et al. 2017), we find that cells from the post-HSCT sample
were genotypically distinct from the pre-HSCT sample, reflecting
successful engraftment of donor stem cells from the HSCT treat-
ment. Thus, anallele-basedapproach candistinguishcellular geno-
types before and after HSCT using patterns of common natural
geneticvariation from3′-tag scRNA-seqdata, evenwithoutexternal
genotype information (Kang et al. 2018).

Integration of expression data enhances power and enables
identification of copy-neutral LOH
In addition to allelic imbalance, the presence of deletions, on aver-
age, also leads to diminished expression of genes within affected

A
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Figure 3. HoneyBADGER analysis of 44multiplemyeloma (MM) cells. (A) Lesser allele profiles where each column is a heterozygous SNP and each row is a
single cell. Points are colored by the lesser allele fraction, with yellow suggesting equal detection of both alleles and red and blue indicating monoallelic
detection in either direction. Points are sized by coverage at the SNP site in the given cell. Cells are ordered based on row dendrogram in C. (B) Allele profiles
for regions identified by HoneyBADGER as potential CNV or LOH regions. Width corresponds to size of region. Cells are ordered based on row dendrogram
in C. (C) Heatmap of posterior probability of CNVs or LOHs in each identified region where each column is a region and each row is a cell. Row side-colors
annotate cells as originating fromMM16 or MM16R and as classified as normal or tumor. (D) Interphase FISH and cytogenetics of cells fromMM16. Of the
200 cells analyzed, 82.5% had a single D17Z1 and TP53 signal; 79.5%, a single MAFB (20q12) signal. The sample analyzed is estimated to have 81%–95%
tumor purity by SDC1+. Representative cells shown. (E) Copy number inference by bulk WES for MM16.
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loci compared with copy-neutral expression references of the same
cell type (Mayshar et al. 2010; Macaulay et al. 2015). Similarly, the
presence of amplifications, on average, leads to increased expres-
sion of genes within affected loci compared with copy-neutral ex-
pression references of the same cell type. Assessment of these
expression-based karyotyping approaches has so far been qualita-
tive in nature (Patel et al. 2014; Tirosh et al. 2016), and the extent
to which they are able to capture smaller, focal deletions remains
to be quantified. To provide such a quantitative evaluation, we
implemented an expression-based HMM to identify regions

potentially affected by CNVs as well as a
Bayesian hierarchical model to assess
the posterior probabilities of alterations
using normalized expression data (Sup-
plemental Fig. 4A). As before, we simulat-
ed deletions of varying size and clonality
by inserting fragments of known dele-
tions into CNV-neutral regions in
MGH31 (see Methods). We find that the
quantitative expression-based approach
is able to identify chromosome-arm-level
clonal and nearly clonal alterations with
high sensitivity and precision (Supple-
mental Fig. 4C–E) but has difficulties re-
solving smaller, subclonal alterations as
accurately as the allele-based approach.
We find that the expression-based ap-
proach is particularly sensitive to the nor-
malization reference used (Supplemental
Fig. 4B). With modern scRNA-seq data
sets often capturing many diverse cell
types, independent normalization of dif-
ferent cell types by corresponding refer-
ences may be necessary.

Joint consideration of both allele-
and expression-based evidence should
increase predictive power. It should also
allow distinguishing deletions from
copy-neutral LOH events. We therefore
extended HoneyBADGER to incorporate
both types of evidence in inferring the
posterior probability of affected regions
identified by either the allele- or expres-
sion-based HMMs. Indeed, we find that
an integrated model offers improved per-
formance in distinguishing regions of
deletion from neutral regions (Fig. 4C;
Supplemental Fig. 4F). While high copy
number amplifications are common in
cancer, the measurements of gene ex-
pression as well as allelic imbalance are
toovariable to confidently infer the exact
copy number. Our approach, therefore,
does not infer the precise copy number
but is aimed at distinguishing deletion,
amplification, and LOH regions from
the unaffected regions.

To demonstrate the utility of our
integrated approach, we applied Honey
BADGER to 55 breast cancer cells from
patient BC09 from Chung et al. (2017).
Chung et al. (2017) previously identified

several cells to harbor known breast cancer–related point muta-
tions, including mutations in LRPAP1, MARCH6, ANKFY1,
DNMT1, GTPBP3, BLZF1, POLA2, TMEM189, AGO3, NNT, PLK4,
and CPSF1 (Supplemental Table 2). However, these cells were in-
ferred to be normal based on expression-based karyotyping,
suggesting a likely misclassification by the expression-based
approach. Reanalysis with the allele-based model of Honey
BADGER shows that these cells harbor multiple chromosome-
arm and chromosome-level abnormalities (Supplemental Fig. 4).
We confirm using bulk WES (Supplemental Table 2) that such
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Figure 4. HoneyBADGER performance as a function of clonality and CNV size. (A) Allele-model sensi-
tivity for identifying SNPs affected by deletion. (B) Allele-model precision for distinguishing tumor (cells
with deletion) from normal (cells without). (C) Prediction performance of HoneyBADGER’s posterior
probability estimates as a function of deletion size. Four different HoneyBADGERmodels are shown using
different colors: expression-only model with PBMC and CD19+ expression normalization reference
(green); expression-only model with normal blood GTEx expression normalization reference (blue); ex-
pression and SNP combined model (purple); and SNP-only model (red). Inner quartile range is indicated
by the vertical lines. Performance was quantified by ROC AUC. (Inset) Representative ROC curves for a
simulated 25-Mb deletion.
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misclassification arose due to copy-neutral LOH where copy num-
ber is maintained, thus resulting in limited changes in normalized
expression but detectable allelic imbalance. Our allele and expres-
sion–combined approach is thus able to identify copy-neutral LOH
events and segregate tumor in away consistent with the pointmu-
tation evidence (Supplemental Fig. 5).

To further evaluate the utility of our integrated approach
with 3′-tag droplet-based scRNA-seq measurements, we applied
HoneyBADGER to 1340 single cells from an unsorted BM biopsy
from a MM patient (MM135) prepared using the 10× chromium
protocol. To determine the appropriate normalization for the ex-
pression data, we first applied our allele-based approach to identify
a deletion onChr 13, which separated a set of putative normal cells
lacking the deletion (Supplemental Fig. 6A). We confirmed using
expression-based clustering analysis that these putative normal
cells did not express known MM marker genes (Supplemental
Fig. 6B). Expression profiles of these putative normal cells were
then averaged to serve as a normal expression reference. We
then applied our integrated approach to identify a number of chro-
mosome-arm and chromosome-level abnormalities on Chr 1, 8,
11, 13, and 22 (Supplemental Fig. 6C–E; Supplemental Table 3).
Unbiased hierarchical clustering on the posterior probabilities of
these alterations effectively separated MM from non-MM cells
(Supplemental Fig. 6E).We confirmed the identified chromosomal
aberrations using FISH and cytogenetics (Supplemental Table 3).
In addition to the chromosomal abnormalities identified by
HoneyBADGER, FISH, and cytogenetics identified an additional
Chr 18 deletion that was missed by our computational approach
due to the lownumber of expressed gene and detected SNPswithin
the region, resulting in high uncertainty. Thus, while we were able
to accurately identify most chromosome-arm and chromosome-
level abnormalities in this 3′-tag scRNA-seq data set, lower SNP
density in such data results in low sensitivity, as expected frompre-
vious benchmarks (Supplemental Fig. 4F).

Analysis of progressive MM identifies genetic subclones with
distinct transcriptional signatures
To examine the interaction of genetic and transcriptional hetero-
geneity in a context of MM progression, we applied Honey
BADGER to analyze tumor samples, collected at two distinct
time points, from a treatment-refractory MM patient (MM34).
The initial MM sample (MM34) was collected from the BM at the
time of diagnosis, and a second extramedullary MM (MM34A)
sample was collected from an ascites dissemination following
two months of unsuccessful thalidomide/dexamethazone and
bortezomib treatment.

We first applied HoneyBADGER to identify regions of CNV in
63 extramedullary MM cells fromMM34A. Our allele-based HMM
identified clonal deletions on multiple chromosomes, including
Chr 1, 2, 3, 8, 13, 16, and 17, and our expression-based HMM iden-
tified a clonal amplification on Chr 3 (Fig. 5A; Supplemental Fig.
7A; Supplemental Table 4). We confirm these CNVs by bulk WES
(Supplemental Fig. 7A).

Next, we sought to identify these deletions in 65 BMMMcells
from MM34 using our integrated approach. We find that while
nearly all cells fromMM34 harbor the Chr 13 deletion, only a frac-
tion harbor the Chr 16 and 17 deletions, indicative of a linear sub-
clonal expansion (Fig. 5A; Supplemental Fig. 7B). Consistent with
HoneyBADGER’s findings, in the initial BM MM sample, CNV
analysis from bulk WES identified a deletion on Chr 13 (Sup-
plemental Fig. 7B), while FISH and cytogenetics analysis of 200

interphase cells also identified a deletion on Chr 13 in 61%
cells in addition to deletion of MAF (16q23) in 38% and TP53
(17p13.1) in 11.5% cells (Supplemental Fig. 7C). The percentage
ofMMcells harboring each deletion inferred fromHoney BADGER
was found to be consistent with the estimates from FISH and cyto-
genetics and bulk WES in both samples (Supplemental Fig. 7D).
Based on these findings, we speculate that a genetic subclone har-
boring deletions on Chr 13, Chr 16, and Chr 17 most likely ex-
panded to seed the extramedullary MM dissemination, acquiring
additional alterations during this process (Fig. 5C).

Having identified this extramedullary-like subclone in the
initial BM biopsy, we next examined its transcriptional signature.
We identified 132 consistently differentially expressed genes (P-
value <0.05) when comparing the extramedullary-like subclone
with other BM-specific MM cells in MM34 as well as jointly with
the extramedullary MM cells in MM34A (Fig. 5B; Supplemental
Fig. 8; Supplemental Table 5). Among the down-regulated genes,
E2F4, DPEP2, and CDH1 are located in the deleted region of Chr
16, indicating direct effects on gene expression from the genotype.
These genes function in the suppression of cell cycle progression,
activation of proinflammatory cytokines through leukotrienes, or
cell adhesion events commonly suppressed during the tumor pro-
gression and metastasis (Ren et al. 2002; Thiery 2002). Among the
rest of transcriptional changes, up-regulation of cell cycle–associat-
ed genes are likely conferred by the release of E2F4 repressor com-
plexes from their promoters. It is noteworthy that Chr 17 deletion
preceded that of Chr 16, suggesting that down-regulation of TP53
on Chr 17 and E2F4 has cooperated for the cell cycle progression
during tumor evolution. As CDH1 and DPEP2 function in protein
networks, the downstream effects are less visible in the trans-
criptional changes. Gene set enrichment analysis (GSEA) (Sub-
ramanian et al. 2005) of genes up-regulated (P < 0.1) in the
extramedullary-like subclone showed significant enrichment (q-
value <0.05) in the genes associated with cell cycle and a known
partial response signature in MM (Zhan et al. 2006), while genes
down-regulated (P < 0.1) showed significant enrichment (q-value
<0.05) in immune response processes (Fig. 5D; Supplemental Table
6;Milacic et al. 2012; Fabregat et al. 2016). Thus, by identifying ge-
netic subclones from scRNA-seq data, we can assess the functional
impact of subclonal alterations at the transcriptional level.

Unbiased analysis of transcriptional heterogeneity identifies
aspects independent of the subclonal structure
Despite significant transcriptional differences between genetic
subclones, alternative sources of heterogeneity, such as differences
in epigenetic state or cellularmicroenvironment,may impact tran-
scriptional state and ultimately phenotypic heterogeneity. Our in-
ference of genetic information from scRNA-seq data provides a
unique opportunity to assess the relative impact of these mecha-
nisms on transcriptional state. To do so, we first characterized tran-
scriptional heterogeneity in MM34 using pathway and gene set
overdispersion analysis (PAGODA) (Fan et al. 2016), which identi-
fies nonredundant aspects of significant coordinated variability
within annotated pathways and correlated gene sets (Fig. 6).
PAGODA identified prominent aspects of transcriptional hetero-
geneity driven by ribosomal processes marking key transcriptional
subpopulations. Other aspects of transcriptional heterogeneity
were driven by expression of T-cell chemokines CCL3 and
CCL4, as well as B2M and genes involved in antigen presentation.
CCL3 and CCL4 have been previously implicated in MM tumor
growth through regulation of the MM microenvironment
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(Roodman 2002; Vallet et al. 2011). Likewise B2M has been used to
predict MM progression (Rossi et al. 2010). Previously, anti-B2M
monoclonal antibodies have been also shown to overcome

bortezomib resistance in MM (Zhang et al. 2015), thus providing
potential therapeutic implications for early discovery of these
subpopulations. When we compare these key transcriptional
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Figure 5. Transcriptional characterization of MM34 and MM34A. (A) Posterior probability of alterations in MM34 and MM34A. (B) Heatmap of 120
consistently significantly differentially expressed genes in comparing the BM-like MM cells versus extramedullary-like MM cells in MM34, and BM-like
MM cells versus extramedullary-like MM cells in MM34 and MM34A (Supplemental Table 4). Select genes of relevance to MM or cancer based on the
literature search are annotated. (C) Proposed linear pattern of subclonal evolution. (D) Gene set enrichment analysis shows enrichment in cell cycle pro-
cesses (left) and a knownMMpartial response signature (middle) for genes up-regulated in the extramedullary-likeMM34 subclone, whereas enrichment in
immune response processes (right) is seen for genes up-regulated in the BM-like MM34 subclone.
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subpopulations with the inferred subclonal cell populations, we
find that many of the identified aspects of transcriptional hetero-
geneity are independent of the subclonal structure. The extrame-
dullary-like subclone was best matched by a less prominent
aspect of transcriptional heterogeneity involved in immune re-
sponse. Thus, while the aspect of transcriptional heterogeneity
corresponding to the genetic subclonal structure is apparent
from the unbiased transcriptional analysis alone, alternative non-
clonalmechanisms can drivemore prominent aspects of transcrip-
tional variation.

Discussion
Altogether, our results demonstrate the ability to integrate genetic
and transcriptional information using scRNA-seq data to identify
and characterize transcriptional programs driving distinct genetic
subclones. We show that compared with an expression-based ap-
proach, an allele-based analysis offers substantially greater sensi-
tivity and precision in identifying deletions that are smaller
on the chromosome scale or present at lower subclonal fraction

within the measured cell population.
Combining allele- and expression-based
approaches further improves perfor-
mance and enables to identification of
copy-neutral LOH events. Our approach
accurately recapitulates expected cancer
cell fractions in single cells compared
with bulk estimates can robustly distin-
guish tumor from normal cells based
on identified CNVs and is suitable for
both full-transcript-length and 3′-tag-
ging scRNA-seq protocols. By examining
MM patient data, we find that while key
genetic subclones do exhibit distinct
transcriptional signatures that likely con-
tribute to cancer progression, other more
prominent aspects of transcriptional het-
erogeneity can be independent of the ge-
netic subclonal structure and are most
likely driven by alternative mechanisms,
including potentially variation in epige-
netic state or microenvironment. By
inferring genotype information from
scRNA-seq data, our approach can help
unravel the impact of genetic and tran-
scriptional heterogeneity and their inter-
play in cancer progression.

Methods

Patient samples and library generation
This study was approved by the institu-
tional review board (IRB) of Samsung
Medical Center (IRB approval no.
SMC2013-09-009-012) and carried out
in accordance with the principles of the
Declaration of Helsinki. The study sub-
jects were Korean patients diagnosed
with MM at Samsung Medical Center,
Seoul, Korea. BM aspirates or ascites
were subjected to Ficoll Paque Plus (GE
Healthcare) gradient and magnetic sepa-

ration with anti-CD138 antibody microbeads (Miltenyi Biotech).
From the CD138− enriched cells, genomic DNA and RNA was pu-
rified using the AllPrep kit (Qiagen). Matching blood DNA was
isolated by the QIAamp DNA blood kit (Qiagen). Normal control
RNA was collected from CD19+ microbead-purified blood B cells
from four healthy volunteers. For bulk WES, genomic DNA
(1 µo) from the BM and matching blood samples was sheared by
Covaris S220 (Covaris) and used for library construction with
SureSelect XT human all exon v5 and SureSelect XT reagent kit,
HSQ (Agilent Technologies) according to the manufacturer’s pro-
tocols. After multiplexing, the libraries were sequenced on the
HiSeq 2500 sequencing platform (Illumina), using the 100-bp
paired-endmode of the TruSeq Rapid PE cluster kit and TruSeq rap-
id SBS kit (Illumina). For scRNA-seq, CD138-enriched cells were
subjected to single cell capture and cDNA amplification using
the C1 single-cell auto prep system (Fluidigm) with the SMARTer
kit (Clontech). Sequencing libraries were generated and multi-
plexed using Nextera XT DNA sample prep kit (Illumina) and se-
quenced on the HiSeq 2500 in the 100-bp paired-end mode of
the TruSeq rapid PE cluster kit and TruSeq rapid SBS kit following
the Smart-seq2 protocol (Picelli et al. 2014).

Figure 6. Pathway and gene-set overdispersion analysis of MM34. Unbiased transcriptional analysis of
the initial bone marrow biopsy sample (MM34). Hierarchical clustering of cells (columns) is shown based
on their overall transcriptional similarity. Top five most significant (P-value <0.05) aspects of transcrip-
tional heterogeneity (rows) are shown by the green–orange heatmap in the center. Expression patterns
of subsets of genes underlying each identified aspect of transcriptional heterogeneity are shown in the
blue–red heatmaps below. Top panels show posterior probabilities of different deletions, and the consen-
sus similarity to the extramedullary dissemination for each cell. Correspondence of different transcrip-
tional subpopulations to the underlying subclonal structure is shown by the association heatmap
(right; black–red). In particular, strong correspondence is observed between genetic subclones and
the immune response aspect of transcriptional heterogeneity. However other, more prominent transcrip-
tional subpopulations (CCL3/CCL4, antigen presentation) appear independently of the subclonal
structure.
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Bulk WES analysis
Reads from the FASTQ files were mapped against the human refer-
ence genome (GRCh37) using BWA MEM v0.7.8 (Li and Durbin
2010). Duplicates were removed using Picard tools v1.87 (https://
broadinstitute.github.io/picard/). Indel realignment and quality
score recalibration were performed using GATK v3.3.0 based on
the GATK best practices guidelines (DePristo et al. 2011). Germline
heterozygous variants were then identified using GATK’s Uni-
fiedGenotyper followed by variant quality score recalibration. To
identify copy number alterations, mapped BAMs were analyzed
by FREEC v7.2 with parameters recommended forWES data analy-
sis by the authors (coefficientOfVariation = 0.062, window = 500,
step = 250, breakPointThreshold = 1.5, readCountThreshold = 50,
noisyData = TRUE) (Boeva et al. 2011). Genomic coordinates for
copy number alternation were identified from the outputted text
summaries and used for downstream analysis. To estimate subclo-
nal deletion frequencies from bulk WES, the following equation
was used based on an assumption of 100% purity: b = f∗0 + (1−
f )∗0.5, where b is the average LAF (lesser allele fraction), and f is
subclonal fraction for deletion. This leads to f = 1− 2b. The LAF
value of a deletion region was obtained by averaging LAF values
over the segments within the region. The segments and their LAF
values were determined by FREEC.

Evaluating SNP detection rates from bulk and single-cell
RNA-seq data
Single-nucleotide variants were called on bulk and single-cell K562
paired-end RNA-seq data using TopHat2 (Kim et al. 2013) and ge-
nome analysis toolkit (GATK) (McKenna et al. 2010; DePristo
et al. 2011). Bulk K562 data (Deng et al. 2011) was downloaded
from the Sequence Read Archive (accession number SRR315337)
using SRAToolkit v2.5.7. Single-cell K562 RNA-seq measurements
were carried out using the C1 single-cell auto prep system, in the
same way as MM cells. Variants were called separately on the indi-
vidual cell (instead of joint calling) for a fair comparison to bulk
data, whichwas also separately fed to the samevariant callingpipe-
line. Later, to match precision, single-cell variants that occurred in
only one cell were discarded. Alignment was performed using
TopHat v2.0.10 (along with Bowtie 2 v2.1.0) (Langmead and
Salzberg 2012) against human genome v37 with decoy, allowing
two mismatches and two gaps and the - -max-multihits = 2 option
to report up to two alignments per read. Then only uniquely
aligned reads were kept. Human GRCh37.73 transcriptome anno-
tationwasused toguide splicedmapping.Aligned readswere sorted
by coordinates using SAMtools v0.1.19 (Li et al. 2009) and dupli-
cates were removed using Picard v1.107 (https://broadinstitute.
github.io/picard/) MarkDuplicates. GATK 3.0.0 was used for the
subsequent processing, including indel realignment, base quality
score recalibration (BQSR), unified genotyper and variant quality
score recalibration (VQSR). The -U ALLOW_N_CIGAR_READS op-
tion was used to handle spliced reads. To provide known polymor-
phic sites to GATK, dbSNP 138 was used for single-nucleotide
substitutions and Mills_and_1000G_gold_standard.indels for
known indel sites. After VQSR, only variants marked as “PASS”
were kept. Likewise, for previously published scRNA-seq data
from Patel et al. (2014), SRA files were downloaded from GEO (ac-
cession GSE57872) and converted to FASTQs using SRAToolKit
v2.3.5. Alignment was performed using TopHat2 v2.0.10 (along
withBowtie 2v2.1.048) againsthumangenomev37withdecoy, al-
lowing two mismatches and two gaps and the - -max-multihits = 2
option to report up to twoalignmentsper read. Thenonlyuniquely
aligned reads were kept. Human GRCh37.73 transcriptome anno-
tationwasused toguide splicedmapping.Aligned readswere sorted

by coordinates using SAMtools v0.1.1949, and duplicates were re-
moved using Picard v1.107 (https://broadinstitute.github.io/
picard/) MarkDuplicates.

Heterozygous SNP identification
Where bulkWES data are available, heterozygous SNPs were called
directly frombulkWESusingGATK3.0.0.Where bulkWESwasnot
available, commonheterozygous variants were identified from the
Exome Aggregation Consortium (ExAC) variant sites database.
ExAC variants were filtered to include single-nucleotide variants
only with minor allele frequency >10%. Variants were further fil-
tered based on presence within the data set of interest. Variants
were considered heterozygous if reads fromboth the annotated ref-
erence and alternate alleles were present and distributed according
toBin(P = 0.5,n) > 1 × 10−8,wheren is the total readcoverage at that
SNP. The resulting putative heterozygous SNPs were used to gener-
ate allele count matrices to assess the reference and alternative al-
lele counts at each position using Rsamtools v1.28.0 (http://
bioconductor.org/packages/release/bioc/html/Rsamtools.html).

Single-cell analysis
For gene expressionquantification, reads fromthe FASTQ fileswere
mapped against the USCS hg19 human reference genome using
TopHat2 v2.1.0 (Kim et al. 2013) and quantified using
featureCounts v1.4.4 (Liao et al. 2014). We do not anticipate re-
aligning reads toGRCh38will affect conclusionsas codingSNPs rel-
evant to our analysis remain largely consistent between the two
builds. For the previously published scRNA-seq data from Patel
et al. (2014), expression matrices were downloaded from GEO (ac-
cession GSE57872). Differential expression analysis on the two
identified subclones was performed using SCDE (v1.99.1)
(Kharchenkoetal.2014;Fanetal.2016)withdefaultparameters fol-
lowing recommended protocols (http://hms-dbmi.github.io/scde/
diffexp.html). Significantly differentially expressed genes were
identified using an absolute noncorrected Z-score cut-off of 1.96,
corresponding to P-value <0.05, for heatmap visualization, and
1.28, corresponding toP-value<0.2, forGSEA.GSEAwasperformed
using the LIGER (https://github.com/JEFworks/liger) package with
input values as sorted MLE estimates of fold-change limited to sig-
nificantly differentially expressed genes. In total, 10,593 curated
(C2), GO (C5), oncogenic (C6), and immune (C7) gene sets from
MSigDB (Liberzon et al. 2015) were tested. Gene sets with less
than five genes or more than 500 genes were omitted. Pathway
andgene-setoverdispersionanalysis to identify transcriptional sub-
populations was performed using PAGODA (SCDE v1.99.1)
(Kharchenko et al. 2014; Fan et al. 2016) with the same gene sets.

HMM
HoneyBADGER implements an expression-based HMM as well as
an allele-based HMM to identify regions potentially affected by
CNVs. For the expression-based HMM, a transition matrix is de-
fined on three hidden states representing deletion, neutral, and
amplification:

1− 2t t t
t 1− 2t t
t t 1− 2t







,

where t = 1 × 10−5 by default. Emission probabilities are defined by
a normal distributionwithmeans and variance estimated from the
normalized expression data (see Supplemental Methods). For the
allele-based HMM, a transition matrix is defined on two hidden
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states representing deletion or LOH, and neutral:

1− t t
t 1− t

( )
,

where t = 1 × 10−5 by default. Emission probabilities are defined by
a binomial distribution with the size parameter given by the
pooled coverage at the SNP position and an expected P = 0.1 for
the lesser allele in the case of deletion or LOH and P = 0.45 for neu-
tral. Default transition probabilities transition have been set based
on the size of the regions expected to be able to detect. We find
that both the expression-based HMM and allele-based HMM is ro-
bust to choices of transition probability t (Supplemental Fig. 9).
However, for genomic regions and protocols with high rates of er-
roneous SNP detection or high normalized expression variance
due to technical noise, we anticipate that these transitionprobabil-
ities may need to be tuned.

Hierarchical Bayesian model
HoneyBADGER contains implementations of an expression-based
approach, an allele-based approach, and an integrative approach
for assessing the posterior probability of CNVs in given regions.
All Bayesian hierarchical models were written in BUGs for Gibbs
sampling. Simulation from the models using MCMC was accom-
plished through rJAGS. Four chains were initialized specifying
starting values for Sk and ddk as 0 or 1 in all possible permutations
where appropriate. The MCMC chains were allowed to run for
1000 iterations, with an adaptation of 100 and a burn-in of 100.
Trace plots were used to ensure appropriate mixing on the hyper
parameters, and Gelman plots were used to diagnose convergence
of chains (Supplemental Fig. 10A,B).

For a particular region of interest, our goal is to make infer-
ence on the copy number status of a cell for that region given its
observed allelic imbalance for germline heterozygous SNPs within
the region and gene expression in the region relative to a putative
diploid expression reference of comparable cell type. For a candi-
date region, let Sk = 1 if cell k has a CNV and Sk = 0 if cell k is
copy number neutral.

In both allele- and expression-based models, we seek to esti-
mate the posterior distribution of Sk given the observations. We
can accomplish this through a hierarchical Bayesian framework,
modeling the observed gene expression as a function of the vari-
ables of interest:

Sk, ddk|gexpk]/ [gexpk|Sk, ddk
[ ]

[Sk, ddk] = gexpk|Sk, ddk
[ ]

[Sk][ddk],

where ddk = 1 for a copy number gain and ddk = 0 for a copy num-
ber loss, such that Sk and ddk together capture the copynumber sta-
tus for cell k, and gexpk is the observed average normalized gene
expression for genes within the tested region of interest in cell k.
Likewise, for the allele-based model, we model observations at
both the individual cell and bulk or pooled SNP-level information
integrated into an additional hierarchical level involving observed
gene-level monoallelic expression rates. An additional combined
model approachmakes inference on Sk using both gene expression
and allele information.

Data access
The scRNA-seq and WES data for the MM cells have been sub-
mitted to the NCBI Gene Expression Omnibus (GEO; http://www.
ncbi.nlm.nih.gov/geo/) under accession number GSE110499.
HoneyBADGER is freely available under the GPL and is available
as an R package (R Core Team 2017) with the source code available
in the Supplemental Material and on GitHub (https://github.com/

JEFworks/HoneyBADGER). Additional tutorials anddocumentation
are available at http://jef.works/HoneyBADGER/.
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