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SUMMARY
The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic
alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblas-
toma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and model
systems, combined with functional experiments. We demonstrate that macrophages induce a transition of
glioblastoma cells into mesenchymal-like (MES-like) states. This effect is mediated, both in vitro and in vivo,
by macrophage-derived oncostatin M (OSM) that interacts with its receptors (OSMR or LIFR) in complex with
GP130 on glioblastoma cells and activates STAT3.We show that MES-like glioblastoma states are also asso-
ciated with increased expression of a mesenchymal program in macrophages and with increased cytotox-
icity of T cells, highlighting extensive alterations of the immune microenvironment with potential therapeutic
implications.
INTRODUCTION

Glioblastoma, isocitrate dehydrogenase (IDH)-wild type, is a uni-

versally lethal form of brain cancer with no effective treatment

available (Louis et al., 2016; Stupp et al., 2005; Wen et al.,

2020). Despite extensive efforts to translate the basic glioblas-

toma biology to patients, molecularly targeted therapies have

largely failed in trials over the past decade (Gilbert et al., 2014;
Wen et al., 2020). Intra-tumoral heterogeneity in glioblastoma

may confer resistance to targeted therapies (Patel et al., 2014;

Sottoriva et al., 2013), such as receptor tyrosine kinase inhibitors

(Furnari et al., 2015; Koga et al., 2019) or an integrin antagonist

that is effective only for a subset of glioblastoma cells (Cosset

et al., 2017). Moreover, multiple studies demonstrated spatio-

temporal heterogeneity among transcriptionally defined tumor

subtypes, such as The Cancer Genome Atlas (TCGA) Proneural
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Figure 1. Macrophages induce transition of cancer cells into a MES-like state

(A) Heatmap shows the average expression of the three TCGA signatures (Mesenchymal, Classical, and Proneural) in different cell types in human glioblastoma

scRNA-seq, including the four GBM cell states: neural-progenitor-like (NPC-like), oligodendrocyte-progenitor-like (OPC-like), astrocyte-like (AC-like), and

mesenchymal-like (MES-like).

(B) Programs of heterogeneity identified using NMF in a mouse model of glioblastoma. Left panel: heatmap shows relative expression of genes from four

programs across all cells. Cells are ordered in three subsequent steps by their score for the cell cycle, OPC-like, MES-like, and AC-like programs; first, cells are

separated into cycling and non-cycling; second, cells within each group are further separated by the identity of the highest-scoring program, or defined as having

no high-scoring program; third, the cells with the same highest-scoring program are further sorted by their score for that program. Selected genes are indicated.

Right panel: gene’s correlations to the corresponding human glioblastoma programs.

(C) Quantification of the fraction of immune cells (CD45+) cells and MES-like (PDPN+ PDGFRa�) glioblastoma (GFP+) cells in each tumor (32 mouse glioblastoma

samples). Pearson correlation is indicated between percentage of CD45+ cells and that of PDPN+ PDGFRa� cells, Pearson r = 0.6747, p < 0.0001.

(D) Left: representative immunofluorescence (IF) staining of mouse tumors in a MES-like, defined as PDPN+ PDGFRa� (left), and an OPC-like, defined as PDPN�

PDGFRa+(right), tumor field, stained for markers for macrophages (IBA1, red), cancer cells (GFP, green), and nuclei (DAPI, blue). See Figure S1D for details of

PDPN and PDGFRa characterization. Scale bars, 50 mm. Right: quantification of the fraction of macrophages (IBA1+) in tumor fields defined as being MES-high

(legend continued on next page)
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(TCGA-PN), Mesenchymal (TCGA-MES), and Classical (TCGA-

CL) (Rooj et al., 2017; Verhaak et al., 2010; Wang et al., 2017),

which may provide further mechanisms to tolerate therapeutics

(Shibue and Weinberg, 2017). Thus, understanding cellular di-

versity and plasticity in glioblastoma is essential both for predict-

ing cellular behaviors under treatment and for discovering key

regulators to manage such heterogeneity.

Single-cell RNA sequencing (scRNA-seq) and advanced

computational analyses now allow to comprehensively identify

recurrent cellular states across tumors that are affected by

both cell-intrinsic and -extrinsic factors (Tanay and Regev,

2017; Tirosh and Suva, 2019). By applying scRNA-seq to glio-

blastoma patient samples, we previously found that the diverse

malignant cells in glioblastoma converge to a limited set of four

cellular states: neural progenitor-like (NPC-like), oligodendro-

cyte progenitor-like (OPC-like), astrocyte-like (AC-like), and

mesenchymal-like (MES-like), with potential for state plasticity

(Neftel et al., 2019). We also delineated the expression programs

of infiltrating macrophages and resident microglia (that we

collectively refer to as macrophages) (Neftel et al., 2019; Ven-

teicher et al., 2017). While these cellular states provide cellular

building blocks to guide our understanding of tumor heterogene-

ity, much remains to be determined regarding their functional

impact and therapeutic sensitivity as well as themechanisms un-

derlying their emergence and plasticity. The gene expression

programs of NPC-like, OPC-like, and AC-like states are

anchored in neurodevelopment and the frequency of these

states in a tumor is influenced by genetic drivers of glioblastoma,

such as CDK4, PDGFRA, and EGFR, providing insights into the

rules governing their emergence (Neftel et al., 2019). In contrast,

the MES-like state appears to have only limited similarity to cell

types detected in the physiological healthy human brain and it

is only partially associated with genetic alterations of glioblas-

toma and thus remains poorly understood. Previous work

showed that the bulk TCGA-MES subtype is correlated with

abundance of macrophages and that NF1 mutations or dele-

tions, enriched in TCGA-MES tumors, increase the recruitment

of macrophages (Wang et al., 2017). Thus, TCGA-MES is in

part associated with increased abundance of macrophages in

the tumor, which might also explain its predominance in recur-

rent settings (Ozawa et al., 2014). Despite these observations,

what drives the emergence of a MES-like cancer state in glio-

blastoma has yet to be addressed, and any potential role(s) of

cell-extrinsic factors on either the cancer or immune cells remain

to be elucidated.

Here, we leverage a mouse model and gliomasphere models

recapitulating glioblastoma cellular states to demonstrate that

macrophages induce the MES-like glioblastoma cell state in vivo

and in vitro. Analysis of ligand-receptor pairs coupled to func-

tional approaches implicate macrophage-derived oncostatin M
(based on PDPN staining) or OPC-high (based on PDGFRa staining). Eight mouse

cells analyzed; PDGFRa, 12 regions, 6,506 cells analyzed). Error bars indicate stan

(**p < 0.001).

(E) Histogram showing observed mean number of macrophages in 30 nearest cell

expected at random (black lines). Blue line shows the fitted normal distribution.

(F) Fraction of MES-like (PDPN+ PDGFRa�) and OPC-like (PDPN� PDGFRa+) cell

with liposome clodronate. Error bars indicate standard error of the mean (n = 9 for

group, *p < 0.0077; PDGFRa group, ***p = 0.0001). See also Figure S1 and Tabl
(OSM) and its receptors (OSMR or LIFR, in complex with

GP130) on glioblastoma cells, in activating STAT3 signaling to

induce a MES-like state. Surprisingly, we find MES-like states

both in malignant cells and in macrophages. We then show

that glioblastoma MES-like states are associated with increased

abundance and cytotoxicity of tumor-infiltrating T cells. Our work

describes a functional interaction between immune cells and the

cellular states that drive glioblastoma.

RESULTS

Macrophages induce transition of cancer cells into a
MES-like state
To better understand the composition of bulk subtypes of glio-

blastoma (as defined by TCGA), we leveraged the scRNA-seq

datasets and examined the average expression of signatures

of the three bulk subtypes within cell types and cellular states.

This analysis demonstrated that TCGA-MES signature is highly

expressed in MES-like cancer cells, but even more so in immune

cells, including macrophages, microglia, and, to a more limited

degree, T cells (Figures 1A and S1A). This supports previous

studies that suggested an association between macrophages

and mesenchymal programs in glioblastoma (Bhat et al., 2013;

Wang et al., 2017), yet whether this association is causal remains

unclear.

To determine whether macrophages cause aMES-like state of

glioblastoma cells in vivo, we utilized a mouse glioblastoma

model induced by lentiviruses harboring GFP, HrasG12V, and

sh-p53, and a derivative tumor transplantation model (Fried-

mann-Morvinski et al., 2012). We profiled GFP+ cells of the lenti-

viral model by scRNA-seq, and applied non-negative matrix

factorization (NMF) to identify variable expression programs.

The NMF programs were highly consistent (albeit not identical)

with those we previously observed in glioblastoma patients (Nef-

tel et al., 2019), particularly for theMES-like and OPC-like states,

and to a more limited extent for the AC-like state (Figures 1B and

S1B–S1D; Table S1). Similar classification of cellular states was

identified by an alternative approach using Louvain clustering

(Figure S1E). Importantly, the co-existence of these distinct

cellular states was consistently observed at multiple time points

after lentiviral-induced transformation (Figure S1B). Thus, while

this model has limitations in its genetic faithfulness to human

glioblastoma, and shows minor species-specific differences in

how cell states are encoded, these results establish its relevance

for studying the heterogeneity of cellular states in glioblastoma,

especially for the MES-like state.

Using established markers for the mouse MES-like (PDPN)

andmouse OPC-like (PDGFRa) glioblastoma cellular states (Fig-

ures S1F–S1G), we found that the fraction of MES-like glioblas-

toma cells (PDPN+ PDGFRa� GFP+) is proportional to the
glioblastoma tissues were subjected to the analysis (PDPN, 20 regions, 14,181

dard deviation (SD), and the difference between averages is significant by t test

s to each MES-like glioblastoma cell in human tumors (red line) and distribution

Tumor section 1 shown on top and tumor section 2 shown on bottom.

s by flow cytometry, in liposome-PBS (control)-treated mice and mice injected

each group), and the difference between averages is significant by t test (PDPN

e S1.
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Figure 2. Macrophage-secreted ligands as

drivers of MES-like state

(A) Average expression of each gene (dot) in glio-

blastoma malignant cells (x axis) and macrophage

cells (y axis). Ligands expressed by macrophages

(pink) with corresponding receptors expressed by

malignant cells (cyan) are colored and labeled.

(B) Correlation between the expression of receptors

shown in (A) and the scores for four human glio-

blastoma cellular states (MES-like, AC-like, NPC-

like, OPC-like) across the malignant cells in the hu-

man GBM scRNA-seq dataset (top) and across

TCGA bulk RNA-seq (bottom). Error bars corre-

spond to standard error, calculated by boot-

strapping 500 cells (top) or 130 tumors (bottom) with

1,000 iterations.

(C) Fraction of MES-like (PDPN+ PDGFRa�) and

OPC-high (PDPN� PDGFRa+) cells by flow cy-

tometry in tumors of mice injected with cells over-

expressing AREG, GAS6, HBEGF, OSM, or lucif-

erase as a control. Error bars indicate standard error

of themean (n = 3 for each group), and the difference

between averages is significant by t test (*p < 0.05).

See also Figure S2.
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abundance of immune cell (CD45+) (Figures 1C and S1H; n = 32

mice, p < 10�4). Immunohistochemical analysis using the pan-

macrophage marker IBA1/AIF1 further showed that macro-

phages are enriched in the vicinity of MES-like glioblastoma cells

compared with OPC-like cells (Figures 1D and S1I; p < 0.01,

t test). To further support such association, we selected the pa-

tient sampleMGH157 as representative of a tumor that spans, by

scRNA-seq, the spectrum of cell states and cell types of glio-

blastoma. Wemeasured a panel of 135 genes by multiplexed er-

ror-robust fluorescence in situ hybridization (MERFISH, see the

STAR Methods) that allowed us to identify MES-like and macro-

phage cells (Chen et al., 2015). We probed two tissue sections

from MGH157 that supported an enrichment of macrophages

adjacent to MES-like glioblastoma cells in situ (Figures 1E and

S1J–S1L). Thus, both in mouse models and in human samples

MES-like glioblastoma states are enriched in the vicinity of

macrophages.

To interrogatewhether thisassociation iscausal,we injectedour

mouse transplant model with the macrophage-depleting agent

clodronate. We observed a reduced percentage of PDPN+

PDGFRa� GFP+ MES-like glioblastoma cells upon clodronate

treatment (Figures 1F, S1M, and S1N; 39.1% decrease, n = 9

mice, p < 0.01, t test), supporting a causal effect of macrophages

on the fractionof glioblastomacells expressing theMES-like state.

Macrophage-secreted ligands drive the MES-like state
To explore potential mechanisms underlyingmacrophage induc-

tion of the MES-like state in cancer cells, we examined putative

ligand-receptor interactions predicted by the glioblastoma

scRNA-seq datasets (Neftel et al., 2019). We identified five li-

gands (AREG,GAS6, HBEGF,OSM, and PDGFB) that are highly

expressed by macrophages and for which a corresponding re-

ceptor (AXL, EGFR, OSMR, and PDGFRB) is highly expressed

by the malignant cells (Figures 2A and S2A). Similarly, we identi-
4 Cancer Cell 39, 1–14, June 14, 2021
fied potential ligand-receptor interactions of malignant cells with

T cells and with oligodendrocytes (Figure S2A) but focused

follow-up experiments on macrophages due to their higher

abundance in glioblastoma and the association with MES-like

cells demonstrated above. Notably, three of the four receptors

for macrophage-derived ligands (AXL, OSMR, and PDGFRB)

are preferentially expressed byMES-like cancer cells, compared

with the other malignant states, in human tumor scRNA-seq

(Neftel et al., 2019) and in TCGA datasets (Figures 2B and

S2B). In addition, three of the macrophage-derived ligands

(OSM, HBEGF, and AREG) are more highly expressed in

glioblastoma-associated macrophages compared with their

counterpart in healthy brain in both human and mouse scRNA-

seq datasets (Geirsdottir et al., 2019; Li et al., 2019; Masuda

et al., 2019; Zhong et al., 2018) (Figure S2C).

To test the impact of macrophage-derived ligands on glioblas-

toma cellular states in vivo, we engineered glioblastoma mouse

cells to overexpress each of the ligands (Figure S2D), injected

them into syngeneic mice brains, and compared the cellular

state distribution of the resulting tumors with those derived

from control settings by flow cytometry (STAR Methods). Over-

expression of two of the five tested ligands (Osm and Hbegf)

led to increased abundance ofMES-like (PDPN+ PDGFRa�) cells
(Figure 2C; n = 3 mice, p < 0.05, t test), whereas Areg and Gas6

did not. Pdgfb overexpression greatly delayed tumor growth,

therefore impeding our capacity to evaluate its impact on glio-

blastoma cells in vivo. Thus, Osm and Hbegf are ligands ex-

pressed by macrophages that induce an in vivo enrichment of

the MES-like glioblastoma state in a mouse model.

OSM-induced transition to the MES-like state is
recapitulated in human cells in vitro

Next, we asked whether the induction of MES-like cells by

macrophage-secreted ligands can also be recapitulated in
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Figure 3. OSM-induced transition to MES-like state is recapitulated in human cells in vitro

(A) Programs of heterogeneity identified using NMF in MGG23, a glioblastoma cell line grown as gliomaspheres. Right panel: heatmap shows relative expression

of genes from four programs across all cells. Cells are ordered in three subsequent steps by their score for the cell cycle, NPC-like, MES-like, and AC-like

programs; first, cells are separated into cycling and non-cycling; second, cells within each group are further separated by the identity of the highest-scoring

program, or defined as having no high-scoring program; third, the cells with the same highest-scoring program are further sorted by their score for that program.

Selected genes are indicated and labeled. Left panel: gene’s correlations with the corresponding human in vivo glioblastoma programs.

(B) Comparison of the programs heterogeneity identified using NMF from the four cell lines profiled: MGG23, MGG75, MGH143, and MGG18. Heatmap shows

each NMF program (six per cell line) correlations with the corresponding human in vivo glioblastoma programs (MES-like, AC-like, NPC-like, and OPC-like).

(C) Fraction of MES-like (CD44+ CD24�) and NPC-like (CD44� CD24+) cells by flow cytometry, in MGG23 cells treated with recombinant AREG, GAS6, HBEGF,

OSM, PDGFB, or control. Error bars indicate SD (n = 3 for each group), and the difference between averages is significant by t test (*p = 0.029).

(D) scRNA-seq of MGG23 (left) and MGG75 (right) after treatment with OSM or BSA. Heatmaps show cells from each experiment, ordered by their score for the

different glioblastoma states. Pie charts below show the relative proportion of each cell state in corresponding heatmap. See also Figure S3 and Table S2.
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human cells. We thus turned to examine the in vitro effect of the

five ligands on primary human gliomasphere models. To identify

amodel that faithfully recapitulates the cellular states of glioblas-

toma, we profiled by scRNA-seq four glioblastoma gliomasphere

models (MGG23,MGG75,MGH143, andMGG18), and identified

variable expression programs by NMF. The gliomaspheres

partially recapitulated the cellular states observed in patient tu-

mors (Figures 3A, 3B, S3A, and S3B). In particular, the programs

identified in MGG23 and MGG75 displayed strong similarities to

the NPC-like, MES-like, and AC-like states, supporting their use

as model systems (Table S2). We further confirmed the utility of

CD44 and CD24 as efficient markers for the isolation and quan-

tification of MES-like and NPC-like cells in gliomaspheres

models, respectively (Figure S3C), consistent with our previous

work (Neftel et al., 2019). Thus, human in vitro gliomaspheres
partially recapitulate the heterogeneity of glioblastoma seen in

patients, and represent additional models of the associated

cellular states, complementary to the mouse model, with spe-

cies-specific differences in markers for cellular state isolation.

We treated MGG23 cells with the five macrophage-derived li-

gands for 24 h and assessed the proportion of glioblastoma

cellular states by CD24 and CD44 expression, measured by

flow cytometry. Consistent with our observations in the mouse

model, there was an increase of CD44+ MES-like cells upon

treatment with OSM (Figure 3C; p < 0.05, t test). In contrast,

the effect of HBEGF was not recapitulated in vitro, possibly re-

flecting a dependence on the TME, a long-term effect on cell

growth, a model-specific effect, or cross-species differences.

We confirmed by RNA-seq that OSM globally upregulated the

MES-like program, rather than only the marker gene CD44, while
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Figure 4. OSM-induced transition of MES-like state is mediated by OSMR/LIFR

(A) Flow cytometry analysis of CD44 expression on MGG23 cells treated with OSM, LIF, or BSA, in wild-type cells (WT) and CRISPR knockout of OSMR (OSMR

KO), LIFR (LIFR KO), both OSMR and LIFR (OSMR/LIFR KO), and IL6ST (GP130 KO).

(B) Quantification of mean fluorescence intensity (MFI) values in (A) reflecting CD44 expression onMGG23 cells treated with OSM, LIF, or BSA, inWT, OSMR KO,

LIFR KO, OSMR/LIFR KO, and GP130 KO groups, normalized by an averaged MFI of BSA-treated cells. Error bars indicate SD (n = 3 for each group), and the

difference between averages is significant by t test (**p < 0.001, ***p < 0.0001).

(C) Flow cytometry analysis of CD44 expression onMGG23 cells treatedwith conditionedmedium (CM) from humanmacrophage culture, inWT, OSMR/LIFR KO,

and GP130 KO groups.

(legend continued on next page)
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also downregulating the NPC-like program (Figure S3D). Simi-

larly, OSM treatment increased the frequency of MES-like cells

in a second glioblastoma model (MGG75; Figure S3E).

To further validate this result, we used scRNA-seq to profile

MGG23 and MGG75 cells after treatment with OSM, as well as

GFP+ glioblastoma cells from the mouse lentiviral model after

in vivo treatment with recombinant OSM. As expected, OSM

treatment led to an increase in the proportion of MES-like cells

(Figures 3D and S3F). This came at the expense of reduced pro-

portion of either OPC-like cells (in the mouse model) or NPC-like

cells (in the gliomaspheres), while the proportion of AC-like cells

was only mildly affected in all model systems. To further examine

this potential interplay between states, we next examined bulk

transcriptome data of 91 matched pairs of primary and recurrent

glioblastoma samples (Wang et al., 2017) and found similar re-

sults. Specifically, we observed an inverse correlation between

the difference in expression of MES-like or macrophage genes

and the expression of OPC-like or NPC-like genes (but not of

AC-like genes) between diagnosis versus recurrence samples

(Figures S3G and S3H). Taken together, these results suggest

that the transition to MES-like cells, both upon experimental

manipulation and in patients’ disease progression, occurs

mainly from NPC-like and OPC-like states.

The MES-like state is induced by STAT3 through OSMR/
LIFR-GP130 complexes
OSM is a pleiotropic cytokine of the interleukin-6 family that

binds either OSMR or LIFR, in a complex with GP130 (Jahani-

Asl et al., 2016; Jones and Jenkins, 2018). Due to the potential

signaling of OSM via LIFR and the high similarity of OSM with

the cytokine LIF, we also tested the effect of LIF onMGG23 cells.

LIF also induced the MES-like program, albeit to a lesser extent

andmore transiently thanOSM (Figures S3D andS4A). To further

understand the mechanism by which OSM and LIF induce the

MES-like program in human glioblastoma cells, we used

CRISPR-Cas9 genome editing to knock out (KO) OSMR, LIFR,

OSMR + LIFR, or IL6ST (encoding GP130) in MGG23 cells (Fig-

ures S4B–S4G, STAR Methods).

The induction of CD44 upon treatment with OSM was partially

decreased in OSMR KO cells and completely abolished by dou-

ble KO ofOSMR and LIFR or by KO of IL6ST (Figures 4A and 4B).

These results suggest that OSM-mediated induction of theMES-

like program is dependent on either OSMR or LIFR (with a stron-

ger effect of OSMR), in a complex with GP130. In contrast, the

induction of CD44 upon treatment with LIF was abolished with

either LIFR or IL6ST KO, but not by OSMR KO (Figures 4A and

4B), suggesting that the effect of LIF on the MES-like state is

mediated by LIFR/GP130 heterodimeric complexes. A similar in-

duction of CD44 was observed with conditioned medium from

human macrophages or microglia, or by co-culturing of

MGG23 with human macrophages (Figures 4C, 4D, S4H, and
(D) Quantification ofMFI values in (C) reflecting CD44 expression onMGG23 cells t

KO groups, normalized by an averaged MFI of control CM-treated cells. Error bars

between averages is significant by t test (*p = 0.0059).

(E) MGG23 cells after knockdown of eight different TFs (CEBPB, FOS, JUN, RE

profiled by RNA-seq. Heatmap of relative expression ofMES-like genes in bulk RN

centered across all samples.

See also Figure S4.
S4I). Also in these contexts, the double KO of OSMR and LIFR

or the KO of IL6ST abolished the induction of CD44, mirroring

the results with OSM treatments. These results suggest that

OSM alone is largely sufficient to reproduce the effect of macro-

phages in inducing the MES-like state of MGG23 cells.

OSMR is a co-receptor for EGFR and OSM has been shown to

enhance EGFR signaling in glioblastoma (Jahani-Asl et al., 2016).

However, several observations indicated that EGFR is not

mediating the effect of OSM on the MES-like program (Figures

S4J–S4L). First, we did not observe an impact of OSM on the

phosphorylation status of EGFR and the downstream kinases,

and in fact found decreased EGFR protein levels upon OSM

treatment. Second, knockdown of EGFR did not affect the

OSM-induction of CD44. To investigate the underlying mecha-

nism for induction of the MES-like state by OSM, we examined

the effects of small interfering RNAs targeting eight transcription

factors that were previously proposed to regulate the mesen-

chymal program in glioblastoma (CEBPB, STAT3, RELA, TAZ,

FOS, JUN, TEAD2, and TEAD4) (Bhat et al., 2011, 2013; Carro

et al., 2010; de Souza et al., 2018). We profiled by bulk RNA-

seq MGG23 cells depleted of each transcription factor (Fig-

ure S4M) after treatment with OSM or BSA. Depletion of

STAT3 abolished the OSM-mediated induction of MES-like

genes such that expression of those genes was similar after

OSM and BSA treatment (Figure 4E). Interestingly, while deple-

tion of JUN and TAZ did not affect MES-like genes, they may

play a significant role in the concomitant downregulation of the

NPC-like program (Figure S4N). Thus, OSM-mediated induction

of the MES-like program is primarily mediated through STAT3,

while JUN, TAZ, and potentially other factors may be needed

for the repression of alternative programs.
A mesenchymal state of glioblastoma-associated
macrophages
While macrophages induce a state transition in glioblastoma

cells, they may also be reciprocally affected by this interaction

or by other elements in the glioblastoma microenvironment. To

explore this possibility, we compared scRNA-seq data ofmacro-

phages from glioblastoma with those from other glioma classes

in which MES-like malignant cells were not detected by scRNA-

seq, including IDH-mutant astrocytoma, oligodendroglioma, and

H3K27M glioma (all profiled by the same lab and with the same

scRNA-seq protocol) (Filbin et al., 2018; Tirosh et al., 2016; Ven-

teicher et al., 2017). The first two principal components (PC1 and

PC2) of a principal-component analysis highlighted the differ-

ences between macrophages of glioblastoma from those of

other gliomas (Figure 5A, STAR Methods). Specifically, PC1 re-

flects a macrophage-to-microglia axis, with macrophage-like

genes (e.g., CD163) and microglia-like genes (e.g., P2RY12)

associated with PC1low and PC1high cells, respectively (Table
reatedwithmacrophageCMor control CM, inWT, OSMR/LIFR KO, andGP130

indicate SD of means from three independent experiments, and the difference

LA, STAT3, WWTR1(TAZ), TEAD2, TEAD4) using small interfering RNA were

A-seq ofMGG23 cells after knockdown of TFs and treatment withOSMor BSA,
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Figure 5. A mesenchymal state of glioblastoma-associated macrophages

(A) Principal-component analysis plot of myeloid cells from four glioma types (GBM for glioblastoma, IDH-mutant astrocytoma and oligodendroglioma, and

H3K27M gliomas).

(B) Heatmap of genes with top (positive and negative) loading scores in PC2, of which the top 40 are labeled. Cells are ordered by their expression of PC2-low

genes. Lower panels indicate the glioma type and the score for the microglia and macrophage programs.

(C) Myeloid cells MP-MES scores (y axis) and macrophage versus microglia scores (x axis). Colors distinguish GBM-derived cells from those of IDH-mutant

tumors (oligodendroglioma and astrocytoma; IDH-O/A).The lines indicate a LOESS regression.

(D) The main heatmap (top) shows expression of the MP-MES program genes in macrophage-like cells in glioblastoma. Cells are ordered by their MP-MES

scores, as shown in the lower panel. Additional lower panels show the expression of four housekeeping macrophage genes, and the tumor of origin (bottom).

(legend continued on next page)
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S3), consistent with an increased proportion of infiltratingmacro-

phages in glioblastoma compared with other gliomas.

Surprisingly, among the top genes associated with PC1low

cells, and even more notably with PC2low cells, and hence higher

in macrophages of glioblastoma than those of other gliomas,

were many of the same genes defining the MES-like state of

cancer cells (e.g., VIM, CD44, and ANXA1). This indicates that

glioblastoma macrophages display a different program than

macrophages in other gliomas and defines a novel macro-

phage-mesenchymal (MP-MES) program (Figure 5B). MP-MES

genes do not overlap with M1-like and M2-like macrophage po-

larization markers (Beyer et al., 2012; Gabrusiewicz et al., 2016;

Mantovani et al., 2017), and combined analysis of all of those

genes suggests that MP-MES is mutually exclusive from M1-

like and M2-like macrophage states (Figure S5A). MP-MES is

enriched among infiltrating macrophages, compared with resi-

dent microglia, and is partially correlated with the microglia-

to-macrophage scores (Figures S5B–S5D). However, when

comparing cells of the same macrophage score, we observed

considerably higher expression of the MP-MES signature in glio-

blastoma compared with other gliomas (Figure 5C).

Notably, high MP-MES is not seen in all glioblastoma macro-

phages. Instead, we observe considerable variability in MP-

MES scores of macrophages within each glioblastoma from

our patient dataset (Figure 5D), as well as in our mouse model

of glioblastoma (Figure S5E). This variability in MP-MES is corre-

lated with the MES-like glioblastoma cells, both across spatial

regions of the same tumor (Figures 5E and S5F) and across

different tumors (Figure S5G).

These results suggest a connection between the mesen-

chymal-like states of macrophages and glioblastoma cells,

such that either MES-like glioblastoma cells induce the MP-

MES, or both states may commonly be induced by shared envi-

ronmental factor(s), such as hypoxia (Figure S5H). To further

examine this association, we leveraged the in vivomouse model

described above, in which glioblastoma cells were engineered to

overexpress OSM. Macrophages isolated from this model had

an increased proportion of MP-MES cells comparedwith macro-

phages from control mice (Figure S5I, p < 0.005, binomial test).

The MP-MES state may be induced by ligands produced by

the MES-like cancer cells, and our analysis identified six poten-

tial ligands (CSF1, CSF3, CX3CL1, TGFB2, TGFB3, and CCL7)

that are highly expressed in the MES-like cancer cells and for

which a corresponding receptor (CSF1R, CSF3R, CX3CR1,

TGFBR2, CCR2, or CCR5) is highly expressed in the macro-

phages (Figures S5J and S5K).

MES-like statesmay be associated with T cell activation
Glioblastoma-associatedmacrophages are typically thought of as

being immune-suppressive (Grabowski et al., 2020). Moreover,

mesenchymal programs have recently been shown to suppress

the activity of T cells in epithelial cancers and to be associated
(E) Boxplots (the line in the box shows themedian, the upper and lower borders of

indicate the 5th and 95th percentiles, and all data points are shown) depict the M

tumor MGH105 (labeled by color onMRI, right). Pie charts below show the assignm

smallest percentage ofMES-likemalignant cells and a significantly lowermacroph

comparisons by t test).

See also Figure S5 and Table S3.
with poor prognosis in glioblastoma (Mariathasan et al., 2018;

Terry et al., 2017).However, our analysispointed towardanenrich-

ment of T cells within TCGA-MES tumors (Figure 1A). T cell enrich-

mentmight be associatedwith increased or decreased anti-tumor

activity, depending on the states of the T cells. In particular, regu-

latory T cells (Tregs) could indicate suppression, while effector

CD8+ T cells might indicate increased cytotoxic activity.

To distinguish between these possibilities, we further exam-

ined the correlation of T cell-specific genes with the MES-like

program across TCGA bulk RNA-seq data. Genes with higher

correlations to the overall abundance of T cells (as estimated

by CD2, CD3D, CD3E, and CD3G) also had higher correlations

to the MES-like scores of bulk tumors, reflecting the overall as-

sociation between T cell abundance and MES-like states (Fig-

ures 6A). We estimated this expected trend with a LOESS

regression and examined which of the T cell genes have higher

or lower correlations with the MES-like score compared with

the regression. We found that cytotoxicity markers (GZMB and

PRF1) had higher correlations, while the Treg marker FOXP3

and exhaustion markers (LAG3, PDCD1, and TIGIT) had lower

correlations with the MES-like scores (Figures 6A, S6A, and

S6B). The correlations of additional genes are shown in Table

S4, although we note that this analysis had to be limited to a sub-

set of T cell genes with a restricted expression pattern.

Thus, TCGA-MES tumors are enriched with T cells and, specif-

ically, with cytotoxic T cells. We sought for potential mechanisms

for this enrichment by evaluating the expression in MES-like cells

of genes that might recruit or activate T cells. Cytokines and che-

mokines were generally not upregulated in MES-like cells (data

not shown). However, major histocompatibility complex class I

(MHC-I) and MHC-II genes were expressed significantly higher

in MES-like glioblastoma cells (as well as in AC-like cells) than

in NPC-like and OPC-like cells (Figure 6B). Accordingly, MGG23

cells treated with OSM expressed significantly higher levels of

MHC-I and MHC-II genes compared with controls (Figure S6C).

Expression of MHC-II genes in cancer cells, such as melanoma,

is associated with better response to immunotherapy (Rodig

et al., 2018). These results, along with the enrichment of cytotoxic

T cells in TCGA-MES tumors, raise the hypothesis that MES-like

states might be more efficiently killed by T cells.

To test the impact of glioblastoma cellular state on T cell-

mediated tumor killing, we established a co-culture system be-

tween human T cells and the MGG75 cell line (Mathewson

et al., 2021). We engineered MGG75 to express NY-ESO-1 and

primary human T cells to express an histocompatibility leukocyte

antigen (HLA)-A2*02:01-restricted, NY-ESO-1 antigen-specific

T cell receptor (TCR) (Rapoport et al., 2015), matching the HLA

subtype of MGG75 (STAR Methods). Upon co-culture, engi-

neered MGG75 cells efficiently activated the engineered

T cells, as measured by T cell activation (CD25 and CD69),

degranulation (CD107a), and exhaustion (PD-1) markers (Fig-

ure 6C). We then assessed state-specific T cell-mediated killing
the box indicate the upper and lower quartile, the lines below and above the box

P-MES scores of macrophages from four different locations of glioblastoma

ent of the malignant cells from each location to four states. Location D had the

ageMP-MES scores comparedwith locations A, B, and C (****p < 10�12 in three
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Figure 6. MES-like states may be associated with T cell activation

(A) Scatterplot of 406 T cell-specific genes. Correlation of each gene’s expression to estimated T cell abundance, defined by genes (CD2, CD3D, CD3E, CD3G)

(x axis) and the correlation of each gene’s expression to the MES-like score (y axis) in TCGA bulk RNA-seq. The line indicates a LOESS regression. Colors

distinguish marker genes for T cell subtypes (cytotoxic, Treg, exhaustion).

(B) Heatmap shows the relative average expression of MHC class I (left) and MHC class II (right) genes in simulated bulk profiles of NPC-like, OPC-like, AC-like,

and MES-like cells.

(legend continued on next page)
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and found that MES-like cells (CD44high) were more efficiently

killed by the T cells than CD44low cells in an 8 h co-culture assay

(Figure 6D, p < 0.05, t test). As a second approach to examine the

differential T cell response to MES-like cells, we treated MGG75

cells with OSM before co-culturing, and once again observed

increased T cell activation and T cell-mediated killing (Figures

6C, 6E, S6D, S6E, and S3E; STAR Methods).

Finally, we searched for evidence of state-specific immune

response in clinical settings. To that end, we explored a recently

published bulk RNA-seq dataset of PD-1-inhibitor-treated glio-

blastoma (Zhao et al., 2019). The small number of patients (n =

17) examined in this work and the limited significance of the re-

ported responses limit the statistical power of our analysis and

its interpretation. Nonetheless, we noticed that most responders,

but not most non-responders, displayed lower MES-like scores

after treatment (Figure S6F; p = 0.1167). This preliminary observa-

tion is consistent with the hypothesis that T cell-mediated killing

was biased toward MES-like cells, which might have therefore

decreased in abundance in responders following PD-1 inhibition.

Taken together, our results suggest that T cell-mediated killing of

glioblastoma cells might be more efficient against MES-like

states, and that inducing the transition of glioblastoma cells to-

ward MES-like states by OSM could facilitate this process.

DISCUSSION

Of the four recurrent cellular states described in glioblastoma,

three states recapitulate neurodevelopment, while the origin of

the fourth state—resemblingmesenchymal cells—remains poorly

understood. Here, we show that the MES-like state is not only

correlated with macrophage abundance but is directly induced

by them, specifically throughmacrophage-secreted OSM that in-

teracts with OSMR or LIFR (in complex with GP130) on glioblas-

toma cells, thereby activating STAT3. Notably, MES-like glioblas-

toma cells were also observed in the absence of macrophages in

spheroid in vitro models, indicating that, while macrophages

significantly increase the frequency of MES-like glioblastoma

cells, their presence is not strictly required.

The establishment of a TCGA-MES tumor—in which macro-

phages are abundant andboth themacrophages and the glioblas-

toma cells acquire a MES-like state—could be described as the

combined result of several processes (Figure 6F). First, an abun-

dance of macrophages could be driven by tumor genetics, such

as alterations of NF1 that promote macrophage recruitment, or

by hypoxia and other aspects of the glioma microenvironment.
(C) Quantification of T cell activation markers (CD25 and CD69), a marker of T cell

after 24 h co-culture of engineered T cells with NY-ESO-1-expressing MGG75 cel

each group), and the difference between averages is significant by t test (*p = 0.

(D) Cellular viability of MGG75-NY-ESO-1 cells co-cultured with or without NY-

MGG75-NY-ESO-1 cells were measured by flow cytometry analysis after an 8 h

between averages is significant by t test (*p = 0.0124).

(E) Cellular viability of NY-ESO-1MGG75 cells pretreated with or without 20 ng/mL

ZombieUV dye incorporation into CD45�MGG75-NY-ESO-1 cells were measured

for each group), and the difference between averages is significant by t test (**p

(F) Scheme explaining the establishment of a TCGA-MES tumor. An abundance o

that promote macrophage recruitment, or by hypoxia and other aspects of the g

state of the glioblastoma cells. The MES-like glioblastoma cells and/or the associ

MES state through mechanisms that remain unclear.

See also Figure S6 and Table S4.
Macrophage-derived OSM then induces a MES-like state of the

glioblastoma cells. Additional extrinsic factors (e.g., hypoxia)

and intrinsic mechanisms may also contribute to the induction

of MES-like states (e.g., a MES-like state is also found in vitro in

the absence of macrophages). This is consistent with the occur-

rence of hypoxia-dependent and hypoxia-independent MES-like

states, as described previously (Neftel et al., 2019).

The MES-like glioblastoma cells and/or the associated micro-

environment may also facilitate a transition of macrophages into

an MP-MES state, and further studies are required to elucidate

its origin and consequences. We note that CSF1R and CSF3R

have relatively lower expression in MP-MES macrophages

compared with other macrophages and microglia, which may

reduce the effectiveness of CSFR inhibitors in targeting these

macrophages, possibly related to CSFR inhibitors failing in clin-

ical trials (Butowski et al., 2016).

Interestingly, OSM is also produced by inflammatory mono-

cytes in the gut where it activates inflammatory fibroblasts

(West et al., 2017). This suggests a coherent function of OSM

in supporting mesenchymal cells across biological contexts.

Since OSM is secreted at high levels by various types of macro-

phages, this could reflect a common mechanism by which mac-

rophages influence tumors and could partially account for the

negative prognostic value of macrophages. Consistent with

this possibility, additional studies suggested that OSM-OSMR

may promote an epithelial-mesenchymal transition in various

carcinomas, such as breast, gastric, pancreatic, and cervical

cancers (Junk et al., 2017; Kucia-Tran et al., 2016; Smigiel

et al., 2017; West et al., 2017). Thus, inhibition of OSM signaling

may reflect a relevant therapeutic strategy for glioblastoma as

well as for carcinomas, by preventing the aggressiveness of

mesenchymal-like cancer cells.

However, at least in glioblastoma, MES-like states of macro-

phages and cancer cells may also represent a therapeutic op-

portunity, as they are associated with high levels of MHC-I and

MHC-II and an abundance of T cells, skewed toward a cytotoxic

state, whichmight influence the response to immunotherapies. It

is conceivable that different treatment modalities exert different

pressures on glioblastoma cellular states and that the worse

prognosis of TCGA-MES tumors to standard-of-care therapy

might be contrasted with a better response to immunotherapies.

Such an effect is hinted by our preliminary analysis of patients’

response to checkpoint blockade (although larger cohorts would

be needed to reach more conclusive results) and by our in vitro

co-culture experiments, demonstrating increased T cell killing
degranulation (CD107a), and an exhaustion marker PD-1� cells in CD45+ cells

ls pretreated with or without 20 ng/mL of OSM. Error bars indicate SD (n = 3 for

011, **p = 0.0083, ***p = 0.0003).

ESO-1 TCR T cells. ZombieUV dye incorporation into CD44low and CD44high

co-culture. Error bars indicate SD (n = 3 for each group), and the difference

of OSM for 24 h, followed by co-culture with or without NY-ESO-1 TCR T cells.

by flow cytometry analysis after an 8 h co-culture. Error bars indicate SD (n = 3

= 0.00829).

f macrophages could be driven by tumor genetics, such as alterations of NF1

lioma microenvironment. Macrophage-derived OSM then induces a MES-like

ated microenvironment also facilitate a transition of macrophages into the MP-
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of MES-like cells. Accordingly, the ability to induce MES-like

states by OSM or other treatments may present a new therapeu-

tic option when coupled with immunotherapies. Future work is

required to fully assess the impact of diverse treatment modal-

ities on the spectrum of cellular states that drive glioblastoma.
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anti-Podoplanin Abcam Cat#ab11936 (clone RTD4E10);

RRID: AB_298718

anti-Pdgfra R&D systems Cat#AF1062; RRID: AB_2236897

APC anti-human OSMR Thermo Fisher Scientific Cat#17-1303-42 (clone AN-V2);

RRID: AB_10805393

APC anti-human LIFR R&D systems Cat#FAB249A (clone 32953);

RRID: AB_10718685

APC anti-human GP130 BioLegend Cat#362006 (clone 2E1B02);

RRID: AB_2563404

anti-GP130 Cell Signaling Cat#3732; RRID: AB_2125953

anti-LIFR Santa Cruz Biotechnology Cat#sc-515337 (clone A-10);

RRID: AB_2891173

anti-EGFR Cell Signaling Cat#2232; RRID: AB_331707

anti-p-EGFR-Tyr1068 Cell Signaling Cat#2234; RRID: AB_331701

anti-AKT Cell Signaling Cat#4691; RRID: AB_915783

anti-p-AKT-Ser473 Cell Signaling Cat#4060; RRID: AB_2315049

anti-ERK1/2 Cell Signaling Cat#9102; RRID: AB_330744

anti-p-ERK1/2-Thr202/Tyr204 Cell Signaling Cat#9101; RRID: AB_331646

anti-MEK1/2 Cell Signaling Cat#8727; RRID: AB_10829473

anti-p-MEK1/2-Ser217/221 Cell Signaling Cat#9154; RRID: AB_2138017

anti-Stat3 Cell Signaling Cat#4904; RRID: AB_331269

anti-p-Stat3-Tyr705 Cell Signaling Cat#9145; RRID: AB_2491009

anti-Jak1 Cell Signaling Cat#3344; RRID: AB_2265054

(Continued on next page)
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anti-p-Jak1-Tyr1034/1035 Cell Signaling Cat#74129; RRID: AB_2799851

anti-Jak2 Cell Signaling Cat#3230; RRID: AB_2128522

anti-p-Jak2-Tyr1008 Cell Signaling Cat#8082; RRID: AB_10949104

anti-Jak3 Cell Signaling Cat#8827; RRID: AB_10999548

anti-p-Jak3-Tyr980/981 Cell Signaling Cat#5031; RRID: AB_10612243

Anti-b-Tubulin antibody Sigma-aldrich Cat#T8328; RRID: AB_1844090

APC anti-human CD3 BioLegend Cat#300312 (clone HIT3a);

RRID: AB_314048

BV785 anti-human CD25 BioLegend Cat#302638 (clone BC96);

RRID: AB_2563808

BV421 anti-human CD69 BioLegend Cat#310930 (clone FN50);

RRID: AB_2561909

PE/Dazzle 594 anti-human PD-1 BioLegend Cat329940 (clone EH12.2H7);

RRID: AB_2563659

VioBlue anti-human CD45 Miltenyi Biotec Cat#130-110-775 (clone REA747);

RRID: AB_2658242

APC Mouse IgG1 BioLegend Cat#400122 (clone MOPC-21);

RRID: AB_326443

APC Mouse IgG2a BioLegend Cat#400222 (clone MOPC-173);

RRID: AB_2891178

Biological samples

Human monocyte-derived macrophages PromoCell Cat#C12915

iPSC-derived human microglia Applied Stem Cell Cat#ASE-9601

Peripheral blood derived T cells Mathewson et al., 2021 N/A

glioblastoma specimen Massachusetts General Hospital IRB# DF/HCC 10-417

Chemicals, peptides, and recombinant proteins

N-2 Supplement (100X) GIBCO Cat#17502048

DMEM/Hams F12 Corning Cat#10-092-CV

Human EGF PeproTech Cat#AF-100-15

Human FGF-basic PeproTech Cat#AF-100-18B

L-Glutamine Corning Cat#25-005-CI

Antibiotic-Antimycotic Thermo Fisher Scientific Cat#15240062

Heparin Sigma-Aldrich Cat#H4784

Neurobasal Medium Thermo Fisher Scientific Cat#21103-049

B-27 Supplement (50X), serum free Thermo Fisher Scientific Cat#17504-044

Penicillin/Streptomycin Thermo Fisher Scientific Cat#15140-122

recombinant mouse Osm R&D systems Cat#495-MO

TrypLE Express Enzyme (1X) Thermo Fisher Scientific Cat#12604013

Human EGF Shenandoah Biotechnology Cat#100-26

Human FGF-basic Shenandoah Biotechnology Cat#100-146

GlutaMAX Supplement Thermo Fisher Scientific Cat#35050-061

recombinant human AREG PeproTech Cat#100-55B-10

recombinannt human HB-EGF PeproTech Cat#100-47-10

recombinant human GAS6 Sino Biological Cat#13170-H08H

recombinant human PDGF-BB Miltenyi Biotec Cat#130-108-165

recombinant human OSM PeproTech Cat#300-10T

recombinant human LIF PeproTech Cat#300-05

Macrophage Depletion Kit Encapsula NanoSciences Cat#CLD-8901

Type-I collagenase Thermo Fisher Scientific Cat#17100-017

Calcein Blue AM BD Biosciences Cat#564060

(Continued on next page)
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Zombie NIR BioLegend Cat#423106

2-Mercaptoethanol Sigma-Aldrich Cat#M6250

Buffer TCL QIAGEN Cat#1031576

Bovine Serum Albumin Sigma-Aldrich Cat#A3059

Maxima H Minus Reverse Transcriptase Thermo Scientific Cat#EP0753

KAPA HiFi HotStart ReadyMix Roche Cat#KK2602

dNTP Mix (10 mM each) Thermo Scientific Cat#R0192

Recombinant RNase Inhibitor Takara Cat#2313B

Agencourt RNAClean XP Beckman Coulter Cat#A66514

Agencourt AMPure XP Beckman Coulter Cat#A63882

SPRIselect Beckman Coulter Cat#B23318

Cell Staining Buffer BioLegend Cat#420201

VectaMount Mounting Medium Vectorlabs Cat#H-5000

cas9 nuclease 2NLS, S. pyogene Synthego Cat#0000000033

QuickExtract� DNA Extraction Solution Lucigen Cat#QE09050

Q5 Hot Start High-Fidelity 2X Master Mix New England Biolabs Cat#M0494

recombinant human M-CSF PeproTech Cat#300-25

Recombinant Human IL-2 PeproTech Cat#200-02

Cas9-NLS Purified Protein QB3 Macrolabs N/A

Zombie UV BioLegend Cat#423108

Protein Assay Dye Reagent Concentrate Bio-Rad Laboratories Cat#5000006

Bolt 4 to 12 % Bis-Tris polyacrylamide gels Thermo Fisher Scientific Cat#NW04120BOX

Critical commercial assays

RNAscope 2.5 HD Duplex Detection Kit Advanced Cell Diagnostics Cat#322430

Neon transfection system, 10uL kit Thermo Fisher Scientific Cat#MPK1025

NextSeq 500/550 High Output Kit v2.5 (75 Cycles) Illumina Cat#20024906

Bioanalyzer High Sensitivity DNA Analysis Agilent Cat#5067-4626

Human T cell isolation kit EasySep Cat#17951

P3 Primary Cell 96-well Nucleofector Kit Lonza Cat#V4SP-3096

Qubit dsDNA HS Assay kit Invitrogen Cat#Q32854

Chromium Next GEM Single Cell 30 GEM, Library &

Gel Bead Kit v3.1

10X Genomics Cat#PN-1000128

Chromium Single Cell 30 Feature Barcode Library Kit 10X Genomics Cat#PN-1000079

Neural Tissue Dissociation Kit (P) Miltenyi Biotec Cat#130-092-628

Chromium Next GEM Chip G Single Cell Kit,16 rxns 10X Genomics Cat#PN-1000127

Nextera XT DNA Library Preparation Kit (96 samples) Illumina Cat#FC-131-1096

Deposited data

scRNA-sequencing data of GBM mouse model This paper GSE168004

scRNA-sequencing data of GBM cell lines This paper GSE168004

scRNA-sequencing data of human GBM Neftel et al.,2019 GSE131928

TCGA GBM cohort The Cancer Genome

Atlas Program

https://portal.gdc.cancer.gov/

scRNA-sequencing data of normal microglia Geirsdottir et al., 2019 GEO GSE134707

scRNA-sequencing data of normal microglia Masuda et al., 2019 GEO GSE124335

scRNA-sequencing data of normal microglia Zhong et al., 2018 GEO GSE104276

scRNA-sequencing data of human astrocytoma Venteicher et al., 2017 GEO GSE89567

scRNA-sequencing data of human oligodendroglioma Tirosh et al., 2016 GEO GSE70630

scRNA-sequencing data of human H3K27M glioma Filbin et al., 2018 GEO GSE102130

(Continued on next page)

ll
Article

Cancer Cell 39, 1–14.e1–e11, June 14, 2021 e3

Please cite this article in press as: Hara et al., Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glio-
blastoma, Cancer Cell (2021), https://doi.org/10.1016/j.ccell.2021.05.002

https://portal.gdc.cancer.gov/


Continued

Reagent or Resource Source Identifier

RNA-seq + microarray data of primary-recurrent GBM Wang et al., 2017 N/A

RNA- sequencing data of PD-1 inhibitor-treated GBM Zhao et al., 2019 SRA PRJNA482620

Experimental models: cell lines

MGG23 Wakimoto et al., 2012 N/A

MGG75 Wakimoto et al., 2012 N/A

MGH143 Wakimoto et al., 2012 N/A

MGG18 Wakimoto et al., 2012 N/A

Mouse glioblastoma cells Friedmann-Morvinski et al., 2012 N/A

Experimental models: organisms/strains

FVB-Tg(GFAP-cre)25Mes/J

(backcrossed to C57BL/6J)

Jackson laboratory Cat#4600

B6.Cg-Tg(Gfap-flpo)62Thara/J Jackson laboratory,

Hara and Verma, 2019

Cat#33116

C57BL/6J Jackson laboratory Cat#664

Oligonucleotides

Hs-CD24 probe Advanced Cell Diagnostics Cat#313021-C2

Hs-CD44 probe Advanced Cell Diagnostics Cat#311271-C2

Hs-CD14 probe Advanced Cell Diagnostics Cat#418801-C1

Gene Knockout Kit v2 - OSMR gRNAs Synthego GKO_HS2_00000 (OSMR)

Gene Knockout Kit v2 - LIFR gRNAs Synthego GKO_HS2_00000 (LIFR)

Gene Knockout Kit v2 - IL6ST gRNAs Synthego GKO_HS2_00000 (IL6ST)

Oligo(dT) Primer (50–AAGCAGTGGTATCAAC

GCAGAGTACTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTVN-30 )

Integrated DNA Technologies N/A

ISPCR Primer (50-AAGCAGTGGTAT

CAACGCAGAGT-30)

Integrated DNA Technologies N/A

siGENOME - Non Targeting siRNA - SMARTpool Dharmacon D-001206-13-05

siGENOME - human STAT3 siRNA - SMARTpool Dharmacon M-003544-02-0005

siGENOME - human CEBPB siRNA - SMARTpool Dharmacon M-006423-03-0005

siGENOME - human TEAD2 siRNA - SMARTpool Dharmacon M-012611-00-0005

siGENOME - human JUN siRNA - SMARTpool Dharmacon M-003268-03-0005

siGENOME - human WWTR1 (TAZ) siRNA - SMARTpool Dharmacon M-0160083-00-0005

siGENOME - human TEAD4 siRNA - SMARTpool Dharmacon M-019570-03-0005

siGENOME - human RELA siRNA - SMARTpool Dharmacon M-003533-02-0005

siGENOME - human EGFR siRNA - SMARTpool Dharmacon M-003114-03-0005

siGENOME - human IL6ST siRNA - SMARTpool Dharmacon M-005166-00-0005

siGENOME - human FOS siRNA - SMARTpool Dharmacon M-003265-01-0005

TRAC gRNA encoding 50- TGTCTA

TAGGTCTTGGGAC-3’

Integrated DNA Technologies,

Mathewson et al., 2021

N/A

Primer: HLA-A*02 Forward:

(50-ACCGTCCAGAGGATGTATGG-30)

Integrated DNA Technologies,

Mathewson et al., 2021

N/A

Primer: HLA-A*02 Reverse:

(50-CCAGGTAGGCTCTCAACTGC-30)

Integrated DNA Technologies,

Mathewson et al., 2021

N/A

Recombinant DNA

pTomo-HrasV12-IRES-GFP-shp53 Friedmann-Morvinski et al., 2012 N/A

pLV- CMV-FRT-RFP-FRT-GFP-P2A-

HrasG12V-U6-shp53

Hara and Verma, 2019 N/A

pLV-PGK-puro-EF1-Luciferase This paper N/A

mOsm cDNA (NM_001013365.2) Integrated DNA Technologies N/A

mGas6 (NM_019521.2) Integrated DNA Technologies N/A
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mPdgfb (NM_011057.4) Integrated DNA Technologies N/A

mAreg (NM_009704.4) Integrated DNA Technologies N/A

mHbegf(NM_010415.2) Integrated DNA Technologies N/A

pHAGE-NY-ESO-1 Mathewson et al., 2021 N/A

NY-ESO-1 TCR Mathewson et al., 2021 N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Itay Tirosh

(Itayt@weizmann.ac.il).

Material availability
Unique reagents generated in this study are available with an MTA.

Data and code availability
Data generated for this study are available through the Gene Expression Omnibus (GEO: GSE168004). The Code supporting the cur-

rent study is available from the corresponding authors on request. Additional datasets used for this study were obtained from the

following studies: GSE GSE131928 (Neftel et al., 2019), GSE GSE134707 (Geirsdottir et al., 2019), GSE GSE124335 (Masuda

et al., 2019), GSE GSE104276 (Zhong et al., 2018), GSE GSE89567 (Venteicher et al., 2017), GSE GSE70630 (Tirosh et al., 2016),

GSE GSE102130 (Filbin et al., 2018), SRA PRJNA482620 (Zhao et al., 2019) and (Wang et al., 2017).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse model
All mice were maintained under pathogen-free conditions, and all procedures performed in this study were approved by the Institu-

tional Animal Care and Use Committee at the Salk Institute and at Massachusetts General Hospital. Lentivirus prepared as described

previously (Hara and Verma, 2019) or lentiviral model derived cells were stereotactically injected into the hippocampus of 6- to 16-

week-old hGFAP-Cre, GFAP-FLPo or C57BL/6J mice (The Jackson Laboratory, Bar Harbor, ME). Briefly, lentiviruses (GFAP-cre

model; 1-3 x 105 IFU, GFAP-FLPo model; 4-10 3 105 IFU) or cells (105 cells) suspended in 1 uL PBS were loaded on a Hamilton sy-

ringe with 33-gauge or 26-gauge needle, and injected at a speed of 0.1uL/30s-1min using the following coordinate: 2.0mmposterior,

1.5 mm lateral, and 2.3 mm dorsal to the bregma. Upon completing injection, the needle was left in place for 3 min, then withdrawn

slowly in 2 min to help reduce virus reflux.

Cell culture
Mouse glioblastoma cells were maintained in 1 x N2-supplemented (Thermo Fisher Scientific) DMEM/Hams F12 (Corning) contain-

ing 20 ng/mL of human fibroblast growth factor (FGF)-2 (Peprotech), 20 ng/mL of human epidermal growth factor (EGF) (Pepro-

tech), 2 mM of L-Glutamine (Corning), 1 x Antibiotic-Antimycotic (Thermo Fisher Scientific) and 40 mg/mL of heparin (Sigma). Pa-

tient derived human glioblastoma cells (MGG23, MGG75, MGH143, MGG18) (Neftel et al., 2019; Wakimoto et al., 2012) were

maintained in Neurobasal Medium (Thermo Fisher Scientific) supplemented with 1/2 x N2 and 1 x B27 (Thermo Fisher Scientific),

1% Penicillin/Streptomycin (Thermo Fisher Scientific), 1.5 x Glutamax (Thermo Fisher Scientific), 20 ng/mL of EGF and 20 ng/mL

of FGF2 (Shenandoah Biotechnology). The HLA-A*02:01 genotype was confirmed in MGG75 cells by performing Sanger

sequencing on genomic DNA amplified with primers for forward: ACCGTCCAGAGGATGTATGG and reverse: CCAGGTAGGCTCT-

CAACTGC. Sequences were aligned to homo sapiens MHC class I antigen (HLA-A) gene, HLA-A*02010101 allele (GenBank:

GQ996941.1).

Human samples
Adult patients at Massachusetts General Hospital (MGH) provided preoperative informed consent to take part in the study in all

cases after the Institutional Review Board Protocols DF/HCC 10- 417. For tissue preparation for MERFISH, flash frozen glioblas-

toma was stored at �80�C until cutting. Frozen tissue was sectioned at �18�C on a cryostat (Leica CM3050 S). Monocyte-

derived macrophages and iPSC-derived microglia were obtained from PromoCell and Applied StemCell, respectively. T cells

were purified from PBMCs obtained from fresh leukaphoresis blood collars procured from the Brigham and Women’s Hospital

blood bank.
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METHOD DETAILS

Flow cytometry
All mice were perfused with ice-cold PBS after euthanasia to reduce the influence of peripheral blood derived cells. The collected

brains were mechanically and enzymatically dissociated using a papain-based neural tissue dissociation kit (Miltenyi Biotec) supple-

mented with 0.1% typeI collagenase (Thermo Fisher Scientific)/PBS. The dissociated cells were first stained with calcein Blue AM

(BD Biosciences) and Zombie NIR (BioLegend) for 25 min at 4�C, and with anti-mouse CD16/32 (BD Biosciences) for 5 min. After

washing cells with ice-cold 1% BSA/PBS, the cells were then stained with a combination of following antibodies; PerCP anti-mouse

CD45 (clone 30-F11, BD Biosciences), phycoerythrin (PE) anti-mPdgfra (clone APA5, BioLegend), Allophycocyanin (APC) anti-

mPodoplanin (clone 8.1.1, BioLegend), and APC anti-CD11b (clone M1/70, BioLegend), for 30 min at 4�C. Note that CD44 antibody

was not efficient in isolating the mouse MES-like population. We thus leveraged a data-driven approach to identify other markers

based on the scRNA-seq mouse data, and found that PDPN and PDGFRa are highly efficient markers for isolating the mouse

MES-like state and OPC-like, respectively, as validated by RNA-seq following FACS sorting. Sorting was performed with Becton

Dickinson Influx cytometer (Becton Dickinson). Side scatter (SSC) width versus forward scatter (FSC) area, and Trigger Pulse Width

versus FSC criteria were used to discriminate doublets and gate only singleton cells. Viable single cells were identified as calcein blue

AM positive and Zombine NIR negative to low cells. Note that macrophages tend to uptake the dye to be Zombie NIR low population.

We sorted viable CD45 negative/GFP positive or CD45 positive/CD11b positive single-cells into 96-well plates containing 10uL of

TCL buffer (QIAGEN) with 1% beta-mercaptoethanol (Sigma Aldrich). Plates were frozen immediately after sorting and stored at

�80�C prior to whole transcriptome amplification, library preparation and sequencing.

ScRNA-seq
For the mouse model, libraries from isolated single cells were generated based on the Smart-seq2 protocol (Picelli et al., 2014) with

the following modifications. RNA from single cells was first purified with Agencourt RNAClean XP beads (Beckman Coulter) before

oligo-dT primed reverse transcription with Maxima reverse transcriptase (Thermo Scientific) and locked TSO oligonucleotide, which

was followed by 20 cycle PCR amplification using KAPA HiFi HotStart ReadyMix (Roche) with subsequent Agencourt AMPure XP

bead purification as described. Libraries were tagmented using the Nextera XT Library Prep kit (Illumina) with custom barcode

adapters (sequences available upon request). Libraries from 768 cells with unique barcodes were combined and sequenced with

paired-end, 38-base reads, using a NextSeq 500 sequencer (Illumina). For the cell lines, scRNA-seq libraries were generated using

the Chromium Next GEM Single Cell 30 GEM, Library & Gel Bead Kit v3.1, Chromium Single Cell 30 Feature Barcode Library Kit,

Chromium Next GEM Chip G, and 10x Chromium Controller (10x Genomics) according to the 10X Single Cell 30 v3.1 with Feature

Barcoding technology for Cell Surface Protein protocol. The cell lines were processed as a pool using TotalSeq-B/Hashtag anti-

bodies (BioLegend), following the manufacturer’s recommendation. Each of the dissociated cells was first stained with Human

TruStain FcX (BioLegend) in Cell Staining Buffer (BioLegend) for 10 min at 4�C, and then stained with barcoded TotalSeq-B anti-

bodies targeting human CD298 and b2 microglobulin in a separated tube for 30 min at 4�C. We generated a single cell suspension

of the pool in 0.04% PBS-BSA and loaded approximately 9,900 single cells to the Chromium Controller with a targeted recovery of

6,000 cells. Single cells, reagents and single gel beads containing barcoded oligonucleotides were encapsulated into nanoliter-sized

droplets and subjected to reverse transcription. Droplets were broken and the barcoded cDNAs were purified with DynaBeads and

amplified by 12 cycles of PCR (98�C for 3 min; [98�C for 15 s, 63�C for 20 s, 72�C for 1 min] x 12; 72�C for 1 min). 30 gene expression

cDNA and TotalSeq antibody derived barcode cDNAwere size-selected and separated with SPRIselect Reagent (Beckman Coulter),

and then fragmented, end-repaired, ligated with index adaptors. Quality control of the resulting libraries was performed with the Bio-

analyzer High Sensitivity DNA Analysis (Agilent). The constructed gene expression library and barcode library were combined at 4:1

ratio and sequenced with paired-end, 28 and 55-base reads, using a NextSeq 500 sequencer (Illumina).

Immunostaining
GFAP-cre or GFAP-FLPomice injectedwith lentiviruses showing clinical symptomswere perfusedwith ice-cold PBS and followed by

with 2%PFA/PBS after euthanasia. To avoid over-fixation, particularly for PDGFRa antigen, additional tissue fixation was performed

in 2%PFA/PBS at 4�C and limited to 12–16 hr. Fixed tissues were washed with PBS for overnight and processed with vibratome into

100–200um thick brain sections and stored in tissue freezingmedia at serially assignedmanners (25%Glycerol, 30%Ethylene glycol,

1.38g/L NaH2PO4, 5.48g/L Na2HPO4). Antibody staining of serial sections was performed overnight, and the primary antibodies used

in this study as follows; anti-Iba1/AIF1 (GTX100042; GeneTex), anti-Podoplanin (ab11936; Abcam), anti-Pdgfra (AF1062, R&D

Systems). The secondary antibodies were as follows: Alexa Fluor 568 anti-rabbit IgG, Alexa Fluor 647 anti-goat IgG, Alexa Fluor

647 anti-hamster IgG (Thermo Fisher Scientific). The nucleus was stained with DAPI. The images were acquired with laser scanning

microscopy, LSM 710, 810 or 880 with Airyscan (Zeiss) equipped with the laser lines (405, 458, 488, 514, 561, 594 and 633nm). In

serial sections, tissues area which are positive for PDPN and GFP but negative for PDGFRa were defined as MES-like, and positive

for PDGFRa and GFP but negative or weakly positive for PDPN were defined as OPC-like.

Multiplexed error-robust fluorescence in situ hybridization (MERFISH)
In order to distinguish among different malignant profiles and between glioblastoma and non-glioblastoma cell types present within

the tumors using MERFISH, we designed a panel of 135 genes using mutual information analysis as reported previously (Li et al.,
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2017) based on previously published glioblastoma scRNA-seq data with corresponding cell-type and cell-state annotations from

(Neftel et al., 2019). MERFISH encoding probes for the 135 genes were then designed as previously described (Moffitt et al.,

2016) from a 16-bit, HammingDistance-4, Hamming-Weight-4 encoding scheme. We included 5 extra barcodes as ‘‘blank’’ barco-

des, which were not assigned to any genes, to provide ameasure of the false-positive rate inMERFISH as described previously (Mof-

fitt et al., 2018). For the 135 gene panel used in this study, 12,944 encoding probes were designed in total, with each gene targeted by

96 unique probes (except for PCNA, which was targeted by 80 probes). Each encoding probe contained a binding site for 2 of the 4

readout probes used to encode the genes identity. Each readout probeswere conjugated to one of the two dyemolecules (Alexa 750,

Cy5) via a disulfide linkage, as described previously (Moffitt et al., 2016). For tissue preparation, two adjacent 12 mm thick tumor sec-

tions were mounted onto coverslips for MERFISH while another 50 mm thick tumor sections immediately anterior or posterior of the

slices used for MERFISH were set aside for bulk RNA-seq. The tissue slices were mounted on prepared coverslips and stained with

the MERFISH probe set as described previously (Moffitt et al., 2016, 2018).For MERFISH imaging, we used a home-built imaging

platform as previously described (Xia et al., 2019). All MERFISH image analysis was performed using MERlin (Xia et al., 2019), a Py-

thon-based MERFISH analysis pipeline (https://github.com/ZhuangLab/MERlin), resulting in cell-by-gene matrices along with

cellular spatial positional information.

RNA in situ hybridization
Paraffin-embedded tissue sections were mounted on glass slides and stored at�80�C. Slides were stained using the RNAscope 2.5

HD Duplex Detection Kit (Advanced Cell Diagnostics, #322430), as previously described (Filbin et al., 2018). Briefly, slides were

baked for 1 hr at 60�C, deparaffinized and dehydrated with xylene and ethanol. The tissue was pretreated with RNAscope Hydrogen

Peroxide (Cat. No. 322335) for 10 min at room temperature and RNAscope Target Retrieval Reagent (Cat. No. 322000) for 15 min at

98�C. RNAscope Protease Plus (Cat. No. 322331) was then applied to the tissue for 30 min at 40�C. Hybridization probes were pre-

pared by diluting the C2 probe (red) 1:50 into the C1 probe (green). Advanced Cell Technologies RNAscope Target Probes used

included Hs-CD24 (#313021-C2), Hs-CD44 (#311271-C2), Hs-CD14 (#418801-C1). Probes were added to the tissue and hybridized

for 2 hr at 40�C. A series of 10 amplification steps were performed using instructions and reagents provided in the RNAscope 2.5 HD

Duplex Detection Kit. Tissue was counterstained with Gill’s hematoxylin for 25 s at room temperature followed bymounting with Vec-

taMount mounting media (Vector Laboratories).

Macrophage depletion
Macrophage depletion was described previously (Saha et al., 2017). Lentiviral model derived mouse glioblastoma cells (105 cells) sus-

pended in 1uL PBS were stereotactically injected into the hippocampus of age-matched C57BL/6J female animals. The mice were

randomly separated into two groups for the treatmentwith either liposome-PBS (vehicle) orwith liposome-clodronate (EncapsulaNano-

Sciences). 50 mg per kg body weight (BW) of liposome-clodronate or an equal volume per BW of liposome-PBS were given to the an-

imals intraperitoneally at day 4, followed by the treatment with a reduced dosing 25mg/kg, to avoid an adverse effect, at day 7, 10, 13,

20, and 27. In this condition, the liposome-clodronate treatment improved the median survival of animals; liposome-PBS, 31days vs

liposome-clodronate, 44 days. The mice were euthanized at day 28 for the flow cytometry analysis to evaluate the fraction of GFP+,

PDPN+, PDGFRa�MES-like andGFP+, PDPN�, PDGFRa+ OPC-like cells and for immunofluorescence to evaluatemacrophage deple-

tion in the tissues. To assess systemic depletion of macrophages, peripheral blood and spleens were harvested from animals treated

eitherwith liposome-PBSor liposome-clodronate and subjected to flowcytometric analysis ofmonocytes;CD45+, CD115+, CD11band

T-cells; CD45+, CD3+. To evaluate the impact of liposome clodronate treatment on glioblastoma cells, mouse glioblastoma cells were

treated with 7.5ug/mL of liposome-clodronate or an equal volume of liposome-PBS and subjected to flow cytometric analysis.

Plasmids
Mouse Areg, Gas6, Hb-egf, Osm and Pdgfb cDNA were synthesized by Integrated DNA Technologies, and cloned into pLenti-PGK-

puro-EF1-Luc vector. These macrophage-derived ligands were expressed in mouse glioblastoma cells with lentiviral infection fol-

lowed by puromycin selection of transduced cells. The overexpression of each of the ligands were confirmed by qRT-PCR, as

well as ELISA of secreted OSM protein (R&D systems). The following specific primers were used: mouse beta-actin forward;

GGCTGTATTCCCCTCCATCG, reverse; CCAGTTGGTAACAATGCCATGT, mouse Areg forward; GGTCTTAGGCTCAGGCCATTA,

reverse; CGCTTATGGTGGAAACCTCTC, mouse Gas6 forward; TGCTGGCTTCCGAGTCTTC, reverse; CGGGGTCGTTCTCGAA

CAC, mouse Hbegf forward; CGGGGAGTGCAGATACCTG, reverse; TTCTCCACTGGTAGAGTCAGC, mouse Osm forward;

CCCGGCACAATATCCTCGG, reverse; TCTGGTGTTGTAGTGGACCGT, mouse Pdgfb forward; AAGTGTGAGACAATAGTGACCCC,

and reverse; CATGGGTGTGCTTAAACTTTCG. The NY-ESO-1 construct was generated by linking the NY-ESO-1 cDNA (Accession

number: NM_139250.2) encoding the relevant NY-ESO-1 protein (processed peptide SLLMWITQC) to luciferase via a T2A peptide

upstream of an IRES followed by the non-functional human nerve growth factor receptor (NGFR) extracellular domain as a selection

marker. The NY-ESO-1 [1G4] TCR cDNA (Robbins et al., 2008) GeneArt, Thermo Fisher Scientific) was cloned into the pHAGE-MCS

lentiviral vector.

Cytokine treatment
For in vitro cytokine experiments, human glioblastoma cells were treatedwith 20 ng/mL of humanAREG, HB-EGF, OSM (PeproTech),

GAS6 (Sino Biological), and PDGF-BB (Miltenyi Biotec) for 24 hr, and glioma spheres were dissociated with TrypLE (Thermo Fisher
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Scientific) to prepare single cell suspension. The dissociated cells were stained with calcein Blue AM, Zombie NIR and antibodies;

anti-CD44 (clone REA690,Miltenyi Biotec) and anti-CD24 (clone REA832,Miltenyi Biotec), and analyzedwith BD LSR II (Becton Dick-

inson) or CytoFLEX (Beckman Coulter). For in vivo treatment of OSM, lentiviruses were co-injected with 20 ng of recombinant OSM

(R&D Systems) and the mice were collected 7 days after the injection for single-cell isolation.

Gene knockout in gliomaspheres
To knockout genes in glioma sphere culture models, cells were transduced with multiple sgRNAs-CAS9 protein complexes (Gene

Knockout Kit v2, Synthego) using Neon transfection system (10uL kit, Thermo Fisher Scientific). Briefly, 1 3 105 cells suspended

in 10uL of resuspension buffer R were mixed with pre-assembled ribonucleoprotein (RNP) complexes (6:1 sgRNA to Cas9 ratio),

and electroporated with double pulses (1200mV, 20ms). To evaluate knockout efficiency, genomic DNA was extracted from cells

using QuickExtract DNA Extract Solution (Lucigen). Prior to Sanger sequencing, the genomic regions targeted by sgRNAs were

amplified by polymerase chain reaction (PCR) using Q5 high fidelity polymerase (New England Biolabs) and following primers,

OSMR Fw: CACTGGCACATATCGTGGAC and Rv: TTCCAGTGCCAAGTTTCACA, LIFR Fw: CCAGGGAAGCTTGAGTTTGA and

Rv: TCTTGATTGTGCTGGTGGTT, IL6ST (GP130) Fw: CCATAATCCAACCACACTTAACA and Rv: CCCAGAAGAGGTTATCAAGCA.

Editing efficiency was determined with Inference of CRISPR Edits (ICE) tool (Synthego), and we observed 80–90% KO score defined

by frameshifts or deletions of more than 21bp. Edited cells were further isolated by FACS sorting with antibodies; APC anti-human

OSMR (clone AN-V2, Thermo Fisher Scientific), APC anti-human LIFR (clone 32,953, R&D systems), APC anti-human GP130 (clone

2E1B02, BioLegend), APC mouse IgG1 (clone MOPC-21, BioLegend), APC mouse IgG2a (clone MOPC-173, BioLegend).

SiRNA knockdown
siGENOME siRNA pools were purchased from Dharmacon, and introduced into glioma spheres using Neon transfection system.

Briefly, 13 105 cells suspended in 10uL of resuspension buffer R were mixed with 100 pmol of siRNAs, and electroporated with dou-

ble pulses (1200mV, 20ms). 24 hours later, the cells were dissociated and seeded into ultra-low attachment plates (Corning), and then

harvested at 72 hr after electroporation to evaluate knockdown efficiency by qRT-PCR or Western blot, or treated with 20 ng/mL of

OSM or BSA for another 24 hr. For RNA-seq readout, 1,000 cells were lysed in 10uL of buffer TCL (Qiagen) with 1% 2-Mercaptoe-

thanol, and processed with the Smart-Seq2 protocol described above with a modification of reduced PCR cycle (20 cycle to

9 cycles).

Western blotting
The cells were lysed with NP-40 lysis buffer and centrifuged at 15,000 rpm for 15 min at 4�C. The supernatants were collected, and

total protein content wasmeasured using the Bradford assay (Bio-Rad Laboratories). Lysates were separatedwith Bolt 4 to 12%Bis-

Tris polyacrylamide gels (Thermo Fisher Scientific), transferred to membrane filters, and subjected to immunoblotting using anti-

GP130 (1:2000, Cell Signaling, #3732), anti-LIFR (1:1000, Santa Cruz Biotechnology, A-10), anti-EGFR (1:1000, Cell Signaling,

#2232), anti-p-EGFR-Tyr1068 (1:1000, Cell Signaling, #2234), anti-AKT (1:1000, Cell Signaling, #4691), anti-p-AKT-Ser473

(1:1000, Cell Signaling, #4060), anti-ERK1/2 (1:1000, Cell Signaling, #9102), anti-p-ERK1/2-Thr202/Tyr204 (1:1000, Cell Signaling,

#9101), anti-MEK1/2 (1:1000, Cell Signaling, #8727), anti-p-MEK1/2-Ser217/221 (1:1000, Cell Signaling, #9154), anti-Stat3

(1:1000, Cell Signaling, #4904), anti-p-Stat3-Tyr705 (1:1000, Cell Signaling, #9145), anti-Jak1 (1:1000, Cell Signaling, #3344), anti-

p-Jak1-Tyr1034/1035 (1:1000, Cell Signaling, #74129), anti-Jak2 (1:1000, Cell Signaling, #3230), anti-p-Jak2-Tyr1008 (1:1000,

Cell Signaling, #8082), anti-Jak3 (1:1000, Cell Signaling, #8827), anti-p-Jak3-Tyr980/981 (1:1000, Cell Signaling, #5031), and anti-

beta-tubulin mouse antibody (1:5000, Sigma).

Human macrophage co-culture
Humanmonocyte-derived macrophages (C12915, PromoCell) or iPSC-derived humanmicroglia (ASE-9601, Applied StemCell) were

cultured at 53 105 cells/mL in DMEM (Corning) supplemented with 20 ng/mL of M-CSF (Peprotech) and 10% FBS. To obtain condi-

tioned medium, MGG23 cells were cultured with or without macrophages for 72 hr in EGF/FGF/M-CSF-containing serum-free me-

dium, and the supernatant was harvested by centrifugation at 2000 rpm for 15 min and stored at 4�C or at �80�C for a long-term

storage. The glioma sphere pellets from the co-culture supernatant were further dissociated with TrypLE to prepare single-cell sus-

pension for flow cytometry analysis. CD45 expression was used to discriminate glioblastoma cells frommacrophages. MGG23 cells

were then incubatedwith control ormacrophage conditionedmedium additionally supplementedwith EGF/FGF for 24 hr before flow-

cytometric analysis.

Primary human T cell isolation
Human T cells were purified from PBMCs obtained from fresh leukaphoresis blood collars procured from the Brigham and Women’s

Hospital blood bank and separated using SepMate PBMC isolation tubes (Stemcell Technologies) (Mathewson et al., 2021). T cells

were isolated by utilization of the Human T cell kit (EasySep, Stemcell Technologies). Human T cells were maintained in RPMI-1640

supplemented with 9% fetal bovine serum (FBS), 1% human serum, 50 units/ml penicillin/streptomycin, 5 mM HEPES, 2 mM Glu-

tamax, 5 mM non-essential amino acids, 5 mM sodium pyruvate, 50 mM b-mercaptoethanol, and 30 units/ml of recombinant human

IL-2 (Peprotech). T cells were activated with human dynabeads (Life Technologies) at a ratio of 1:1 in the presence of IL-2 for 3 days

followed by the inactivation of the endogenous T cell receptor ɑ constant (TRAC) locus using a ribonucleoprotein (RNP) complex of
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Cas9 protein and a gRNA encoding 50-TGTCTATAGGTCTTGGGAC-30. The RNP was electroporated into the stimulated primary hu-

man T cells using an Amaxa 4-D nucleofector. The T cells were next transduced with lentivirus to induce expression of the NY-ESO-1

TCR (Mathewson et al., 2021). The T cells were cultured in IL-2 and rested for 3 days prior to the co-culture assay by removing the

magnetic dynabeads.

Human T cell co-culture
As recently described (Mathewson et al., 2021), MGG75 cells were pretreated with 20 ng/mL of OSM or vehicle control for 24 hr prior

to co-culture experiment. The next day, the MGG75 cells were collected and dissociated into a single-cell suspension and washed

two times to removeOSM. TheMGG75 cells were pre-incubated in ultra-low attachment 96-well plates (25,000 cells per well) for 3 hr,

then NY-ESO-1 TCR + T cells were seeded at a 1:1 ratio and cultured for 8 hr (killing assay) or 24 hr (flow cytometry). Cells were

stained with Zombie UV (BioLegend) for 10 min, and subsequently stained with antibodies against PE anti-human CD44, APC

anti-human CD3 (clone HIT3a, BioLegend), BV785 anti-human CD25 (clone BC96, BioLegend), BV421 anti-human CD69 (clone

FN50, BioLegend), and PE/Dazzle 594 anti-human PD-1 (clone EH12.2H7, BioLegend).

QUANTIFICATION AND STATISTICAL ANALYSIS

ScRNA-seq data processing
For the mouse model, as quality control, we excluded sequenced cells with fewer than 3,000 detected genes. Among the remaining

cells, we detected on average 5,855 genes per cell. Expression levels were quantified as E(i,j) = log2(TPM(i,j)/10+1), where TPM(i,j)

refers to transcript-per-million for gene i in cell j, as quantified by RSEM (Li and Dewey, 2011). The average number of transcripts

detected per cell was less than 100,000, thus TPM values were divided by 10, to avoid inflating the differences between detected

(E(i,j) > 0) and non-detected (E(i,j) = 0) genes, as previously described (Tirosh et al., 2016). For the remaining cells, we calculated

Eavg(i) = log2(mean(TPMi,1...n)+1) for each gene, and excluded genes with E avg < 4. For the cell lines, cell barcode filtering,

alignment of reads, and UMI counting were performed using CellRanger 3.0.1 (10x Genomics). Expression levels were quantified

as E(i,j) = log2(1 + CPM(i,j)/10), where CPM(i,j) refers to 106*UMI(i,j)/sum[UMI 1..n,j], for gene i in sample j, with n being the total num-

ber of analyzed genes. CPM values were divided by 10, as described above for TPM values. Cells with a number of detected genes

less than 2,000 were excluded, and we detected an average of 2,885 genes detected per retained cells. For the remaining cells, we

assigned cells according to their cell-line (described below), and for each cell line, calculated the Eavg(i) = log2(mean(CPMi,1...n)+1)

for each gene, and excluded genes with Eavg < 4. For both systems, we defined relative expression over the remaining cells and

genes, by centering the expression levels per gene, Erel(i,j) = Ei,j - mean[Ei,1...n].

Cell line assignment
We used a gene expression-based method to assign cells from the pool to individual cell lines, similar to the method previously

described (Kinker et al., 2020). First, we subsetted the gene expression matrix of all of the single cells from the pool to only include

cells with at least 2,000 genes detected, and the top 7,000 most highly expressed genes. Next, we used hierarchical clustering of the

all of retained single cells and genes, using oneminus the Pearson correlation (across all analyzed genes) as the distancemetric. This

separated the cells of the pool into 5 clusters, each representing a separate cell line. Finally, for each cluster, we identified the refer-

ence cell line from the pool with the most similar bulk RNA-seq gene expression profile (Pearson correlation similarity), and in this

way, assigned the cells of that cluster to that cell line.

Characterization and comparison to human transcriptional heterogeneity
We analyzed the mouse model and each cell line separately to identify patterns of expression heterogeneity. NMF was applied to the

relative expression values (Er), by transforming all negative values to zero, as previously described (Kinker et al., 2020; Puram et al.,

2017). We performed NMF using the R package NMF with the number of factors k=6 and defined expression programs as the top 40

genes (byNMF score). Programs of expression heterogeneity in humanGBMwere previously defined-MES1-like,MES2- like, NPC1-

like, NPC2-like, AC-like, OPC-like, G1S, and G2M (Neftel et al., 2019). For each NMF program found each of our model systems, we

calculated the Jaccard similarity with each of the human programs, and found the program it wasmost similar to. Next, we calculated

for each gene in each NMF program, the correlation of its expression with the average expression of the human program it was most

correlated to across all of the cells in that model system, and selected the 25 highest correlated genes for each NMF program.

Definition of single-cell gene signature scores
Cells were scored to a gene signature as previously described (Neftel et al., 2019), using the R package scalop (https://github.com/

jlaffy/scalop). Given a set of genes (Gj ) reflecting an expression signature of a specific cell type or biological function, we calculate for

each cell i, a score, SCj (i), quantifying the relative expression of Gj in cell i, as the average relative expression (Er) of the genes in Gj,

compared to the average relative expression of a control gene-set (Gj cont): SCj (i) = average[Er(Gj,i)] – average[Er(Gj cont,i)]. The

control gene-set is defined by first binning all analyzed genes into 30 bins of aggregate expression levels (Ea) and then, for each

gene in the gene-set Gj, randomly selecting 100 genes from the same expression bin. In this way, the control gene-set has a com-

parable distribution of expression levels to that of Gj, and the control gene set is 100-fold larger, such that its average expression is

analogous to averaging over 100 randomly selected gene-sets of the same size as the considered gene-set.
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Assignment of cells to metaprograms
Malignant cells were first separated by cycling and non-cycling cells, based on their score for the G1S andG2Mmeta-modules. Next,

cells were assigned to the meta-module with the highest score between the six meta-modules (MES1-like, MES2-like, NPC1-like,

NPC2-like, AC-like, OPC-like) as previously described (Neftel et al., 2019), however cells with a score of less than 0.3 for any program

or a difference of less than 0.1 between the highest and second-highest state scores were defined ‘‘unclassified’’. For most analyses,

we collapsed the MES1 and MES2 groups of cells into one group of MES-like cells, and similarly, the NPC1 and NPC2 cells into one

group of NPC-like cells. Myeloid cells were assigned in a similar matter using gene-signatures for microglia and macrophages, as

defined in (Venteicher et al., 2017).

Simulated bulk expression of glioblastoma cell types
ScRNA-seq dataset of glioblastoma was taken from our previous study (Neftel et al., 2019). Cell-types were already annotated in the

dataset (malignant cells, myeloid cells, t-cells, oligodendrocytes). Malignant cells were assigned to the specific meta-programs and

myeloid cells were assigned as microglia or macrophages as described in assignment of cells to metaprograms. Bulk expression

levels for each gene j in cell i of a certain cell-type was quantified as Ei,j = log2( avg(TPMi,j) +1). Simulated bulk expression was

used to examine the relative contribution of various cell types to the TCGA subtype signatures by calculating the average expression

of each TCGA signature in each bulk cell-type. In addition, simulated bulk expression was used in the ligand-receptor analysis to find

ligands highly expressed in non-malignant cell types with receptors highly expressed in the malignant cells.

Processing of bulk RNA-seq data
Reads were aligned to the GHCh38/hg38 human genome using Bowtie and expression values were quantified using RSEM. Data

underwent quantile normalization using the R package preprocessCore. Data are presented as Ei,j = log2[(TPMi,j) + 1], where TPMi,j

refers to transcript-per-million for gene i in sample j, as calculated by RSEM (Li and Dewey, 2011).

Bulk scores defined for TCGA samples
Expression data from TCGA samples was based on both the Agilent microarray and RNA-sequencing platforms and scoring for

meta-modules was performed as previously described (Neftel et al., 2019). We first defined initial bulk scores by the average expres-

sion of a meta-program. Next, we calculated the correlation of eachmeta-program gene with the initial scores. Genes were excluded

if their correlation was below 0.4 or if the correlation was higher for a different meta-program. The remaining genes were then used to

define refined bulk scores.

MERFISH data analysis
For quality control, we first assessed the consistency of average log10 gene expression magnitudes between tissue sections as

measured by MERFISH and bulk RNA-seq. Overall, we observed the high correlation between gene expression in both MERFISH

sections and the corresponding bulk RNA-sequencing sections (Pearson Correlation R = 0.82 and 0.83) as well as between the two

MERFISH sections (PearsonCorrelation R= 0.87).We further confirm that on average, the blank barcodeswere detected at lower levels

compared to 133 out of the 135 real genes. To restrict our analysis to high quality cells and fields of view, we removed fromdownstream

analysis cells with fewer than 10^1.5 total gene counts and cells with volumes less than 10^1.5 or greater than 10^3.5. To avoid edge

effects,we further removed cells in fields of views along the edgeof the tumor samples.Overall, 20244 cells (10354 in section 1 and 9890

in section 2) in total were retained for downstream analysis. Gene counts were then normalized by cell volume as described previously

(Moffitt et al., 2016, 2018). To annotate cell-types and cell-states in MERFISH, we again leveraged previously published GBM scRNA-

seq data with corresponding cell-type and cell-state annotations from Neftel et al. scRNA-seq counts were CPM normalized and log

normalized with a pseudocount of 1. Keeping only the 135 genes that were also measured in the MERFISH samples and using the pre-

vious cell-type annotations, we restricted analysis to 115 significantly differentially expressed genes between annotated groups based

onWilcoxon rank sum testingwith aBenjamini-Hochbergmultiple hypothesis correction (adjusted p value < 0.05).Weperformedunified

clustering analysis between the scRNA-seq data and the MERFISH data using Harmony (Korsunsky et al., 2019). We trained a linear

discriminant analysis model to predict cell-types using the harmonized scRNA-seq data and corresponding cell-type annotations,

and applied the trained model to transfer annotations to cells in the MERFISH data. We further confirm the reasonableness of cell-

type annotations for MERFISH using clustering analysis on the harmonized expressions and evaluating for the expression of expected

marker genes as compared to scRNA-seq data. We then used the transferred cell-type annotations to evaluate the spatial co-localiza-

tion patterns in the MERFISH tissue sections. To assess the spatial co-localization between macrophages and MES-like glioblastoma

cells, we computed the average number ofmacrophages in the 30 spatially closest cells to eachMES-like cell. To calculate significance,

we randomly permuted cell-type labels and computed average number ofmacrophages nearest neighbors as above to simulate the null

distribution expected if there was no spatial association.We then fit a Gaussian distribution to the simulated null distribution and used it

to compute a one-sided permutation p value for the observed average number of macrophages nearest neighbors. We repeated this

analysis to assess the spatial co-localization between oligodendrocytes and MES-like cells.

Inferring ligand-receptor interactions
Simulated bulk expression of each cell type in glioblastoma was used to infer ligand-receptor interactions. A list of putative ligand–

receptor pairs was taken from a known study (Ramilowski et al., 2015). The list was subsetted to only include pairs that were considered
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‘‘known’’ and for ligands which are known secreted factors. For each cell-type interaction tested, all ligands that had a higher average

expression than 4 in the interacting cell-type (i.e. macrophages) and a corresponding receptor that had a higher average expression

than 4 in the glioblastoma malignant cells were chosen as possible interaction axis. If more than one receptor met this requirement

for a given ligand, such as the case with ligand GAS6 and receptors (AXL, TYRO3), the receptor that was most highly associated

with the MES-like malignant state was chosen. Association of each receptor to the meta-programs was calculated by the correlation

of each receptor’s expression across all malignant cells in the single cell RNA seq dataset, as well as the tumors of TCGAdatasets, with

the corresponding meta-program scores. The robustness of this correlation was tested by repeating this correlation 1000 times where

500 cells were sampled each time.

Comparing macrophages across glioma
ScRNA-seq dataset of gliomas was taken from our previous studies: IDH-wildtype glioblastoma (Neftel et al., 2019), IDH-mutant as-

trocytoma (Venteicher et al., 2017), IDH-mutant oligodendroglioma (Tirosh et al., 2016), andH3K27Mgliomas (Filbin et al., 2018). PCA

was performed over the relative expression matrix Erel of all microglia/macrophages, which were previously annotated in the data-

sets, from these gliomas including all genes with Ea > 4 (defined only on the basis of microglia/macrophage cells). The second prin-

cipal component, PC2, separated theGBMmyeloid cells from the other gliomamyeloid cells. PC2 geneswere defined as thosewith a

loading score above 0.03 (PC2-high genes) or below �0.025 (PC2-low genes). We observed many MES-like genes in the PC2-low

genes, and defined an MP-MES signature as genes that were PC2-low and MES-like. Because the MP-MES was more associated

with macrophages than microglia, we repeated the PCA analysis in 2 parts (Figure S4B): 1) cells that were confidently assigned as

microglia from each glioma and 2) cells that were confidently assigned asmacrophages from each glioma using previously published

microglia and macrophage signatures (Venteicher et al., 2017). In addition, in order to compare the MP-MES score between GBM

and the other gliomas, taking into account for the macrophage bias, we scored each cell for its macrophage, microglia, and MP-

MES score and plotted the MP-MES score against the difference between the macrophage and microglia score.

Associations of MES-like state with T-cell and myeloid states in TCGA
To evaluate if the MES-state is associated with a specific subtype of T-cells, we used the bulk expression profiles from TCGA, sepa-

rately analyzing the RNA-seq and the microarray datasets, both of which were log-transformed and normalized. First, we used our

glioblastoma scRNA-seq data (Neftel et al., 2019) to compare the average expression of each gene across different cell types and

identified genes that were at least 8-fold higher expressed in T-cells than in any other cell-type. Next, we scored each tumor in the

TCGA dataset for the glioblastoma MES-like state, and for their total T-cell signal, defined by the average normalized expression of

the genes CD2, CD3D, CD3E, and CD3G. Since the state of T-cells cannot be properly evaluated if the total T-cell signal is low, we

restricted further analysis to 79 out of 179 tumors fromRNA-seq dataset (and 202 out of 441 tumors for themicroarray tumor) that had

a total T-cell score above 4. For the scatter plot in Figure 6A, we then plotted each gene expression’s correlation to the MES-like

score against its correlation to the total T-cell signal. For the histograms in Figure S6A, we generated a relative expression profile

for each T-cell specific gene, by subtracting from its expression the median expression of all T-cell specific genes. We then calcu-

lated the Pearson correlation of each gene’s normalized expression to the MES-like score across all tumors. T-cell signatures were

defined as follows: FOXP3 for T-regs, and PRF1, GZMB for Cytotoxic T-cells. For myeloid cells, the same analysis was repeated us-

ing myeloid-specific genes, and the macrophage/microglia signatures were defined as described above.

Analysis of bulk RNA-seq from PD-1 inhibitor trial
TPMmatrix of bulk RNA seq of glioblastoma patients before and after treatment with PD-1 inhibitor was taken from a published study

(Zhao et al., 2019). Each tumor was scored for the MES-like program as explained earlier. If multiple tumors were taken for the same

patient before or after treatment, the average score was calculated. We compared the MES-like score for pre-treatment and post-

treatment between patients that responded vs non-responders.

Comparing OSM expression in glioblastoma-associated myeloid cells with healthy microglia
Three datasets of scRNA-seq of healthy human microglia (Geirsdottir et al., 2019; Masuda et al., 2019; Zhong et al., 2018) and two

datasets of healthy mouse microglia (Li et al., 2019; Masuda et al., 2019) were used to compare the relative expression of OSM in

glioblastoma associated myeloid cells from our previously published scRNA-seq from 10x and SS2 platforms (Neftel et al., 2019).

For each dataset simulated bulk expression was calculated for the myeloid cells. Next, for each comparison separately, simulated

bulk expression of each gene in the healthy microglia simulated bulk (X) was plotted against its expression in the glioblastoma-asso-

ciatedmacrophages simulated bulk (Y). Then, to overcome the differences in the platforms used for scRNA-seq, a line was fitted over

the expression, which was defined in the followingmanner: for i = 1..100 the point (Xi,Yi) such that Xi is the i’th percentile value of the X

dataset and Yi is the i’th percentile value of the Y dataset. The Y distance of OSM from the line was calculated for each comparison

between healthy microglia and glioblastoma myeloid cells, as well as control comparisons comparing: glioblastoma microglia vs

glioblastoma macrophages, glioblastoma myeloid cells profiled from the 10x platform vs glioblastoma myeloid cells profiled by

SS2 platform, and two healthy microglia datasets against each other.
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