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Abstract
Intratumor heterogeneity is a common characteristic across diverse cancer types and presents challenges to current
standards of treatment. Advancements in high-throughput sequencing and imaging technologies provide
opportunities to identify and characterize these aspects of heterogeneity. Notably, transcriptomic profiling at a single-
cell resolution enables quantitative measurements of the molecular activity that underlies the phenotypic diversity of
cells within a tumor. Such high-dimensional data require computational analysis to extract relevant biological insights
about the cell types and states that drive cancer development, pathogenesis, and clinical outcomes. In this review, we
highlight emerging themes in the computational analysis of single-cell transcriptomics data and their applications to
cancer research. We focus on downstream analytical challenges relevant to cancer research, including how to
computationally perform unified analysis across many patients and disease states, distinguish neoplastic from
nonneoplastic cells, infer communication with the tumor microenvironment, and delineate tumoral and
microenvironmental evolution with trajectory and RNA velocity analysis. We include discussions of challenges and
opportunities for future computational methodological advancements necessary to realize the translational potential
of single-cell transcriptomic profiling in cancer.

Introduction
Cancer is a highly heterogeneous disease exhibiting

phenotypic diversity driven by molecular aberrations at
the genetic, epigenetic, transcriptomic, and protein levels
in cells that interact within distinctly spatially organized
microenvironments1. Such heterogeneity presents chal-
lenges to current standards of treatment by contributing
to metastasis and therapeutic resistance, which ultimately
impact clinical outcomes. Accurate characterization of
this heterogeneity is essential for delineating the
mechanisms of cancer pathogenesis, developing effective
treatment strategies, and identifying novel targets for
immunotherapy and drug development2.

The characterization of heterogeneity at the tran-
scriptomic level has been promising, as changes in tran-
scriptional activity and regulation generally underlie
cellular phenotypic diversity. The continuous advances in
next-generation sequencing technologies such as RNA
sequencing (RNA-seq) have enabled the genome-wide
quantification of gene-expression levels in a high-
throughput manner under diverse conditions. Over the
years, these data have led to numerous discoveries in
biology, including insights into the phenotypic con-
sequences of molecular aberrations in cancer3.
However, such transcriptomic profiling studies have

conventionally involved bulk RNA-seq analysis of pooled,
heterogeneous mixtures of cells from cancer samples
(Fig. 1). Thus, the resulting gene expression quantification
results represent average values across large mixtures of
cells and are influenced by the particular transcriptional
profiles as well as the abundance of different cell
types and states within that sample. Even for samples of
sorted cell subsets, finer aspects of heterogeneity, such as
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transcriptional differences between distinct subpopula-
tions, can still be missed if these subpopulations are in the
same sorted subset. In contrast, transcriptomic profiling
at a single-cell resolution in cancer offers the opportunity
to identify and characterize transcriptionally distinct
subpopulations and states that may impact clinical out-
comes, inform treatment strategies, or point to new
therapeutic opportunities4,5.
To enable transcriptomic profiling at a single-cell

resolution, a number of high-throughput single-cell
RNA-sequencing (scRNA-seq) protocols, platforms, and
technologies have been developed6–10 and reviewed11–14.
In terms of computational processing, each particular
scRNA-seq protocol, platform, and technology may
demand different read processing, quality control, and
normalization procedures15. Despite these differences,
there are a number of common downstream computa-
tional analyses that can be applied (Fig. 2). Here, we
highlight computational methods for performing a num-
ber of analyses relevant to cancer research, including (1)
identifying common cell types and states shared across
patients and disease states from multiple scRNA-seq
datasets; (2) distinguishing neoplastic from nonneoplastic
cells using marker and fusion gene detection, copy-
number variation inference, and somatic mutation calling

from scRNA-seq data; (3) inferring cell–cell commu-
nication from the expression of genes encoding receptors
and ligands; (4) estimating the proportions of cell types in
bulk gene expression profiles; and (5) characterizing
transcriptional dynamics using trajectory inference and
RNA velocity analysis.

Unified analysis across many patients and disease states
In the context of cancer, the analysis of single-cell

transcriptomics data is often complicated by elaborate
study designs that may include samples from individuals
with and without disease, multiple samples from the same
individual collected at different time points (e.g., pre-
treatment and posttreatment), or multiple samples from
different individuals exhibiting diverse disease states. Such
study designs can enable the discovery of transcriptional
characteristics shared across patients that may define
commonly perturbed molecular pathways in disease.
However, the identification of shared cell types or states in
data from complex study designs may be difficult when
cells are clustered by sample or batch instead of the cell
types or states of interest16 (Fig. 3a). This challenge
regarding batch effects can lead to false discoveries17 and
complicates the identification of shared cell types and
states that are necessary for downstream analyses
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Fig. 1 Cancer may manifest as multiple spatially distinct tumors composed of multiple functionally and/or genetically distinct neoplastic
subpopulations as well as diverse nonneoplastic cell types and states that interact to impact clinical outcomes. In this illustration, (left) a
single patient presents with cancer at multiple sites. (top right) Zooming into one site, multiple cell types, both neoplastic and nonneoplastic, can be
observed. Within the neoplastic cells, two distinct subpopulations marked by different somatic mutations, indicated with a star, are present. Likewise,
within nonneoplastic cells, multiple distinct T-cell and B-cell subtypes and states, indicated with different shades of colors, are present. (bottom) Bulk
measurements provide the average quantification of gene expression, which potentially obscures proportional and subpopulation or state-specific
differences. The expression levels of three genes determined from bulk and pooled single-cell measurements for the two different neoplastic
subtypes and major nonneoplastic cell types (T-cells, B-cells, and other) are illustrated as an example. The first two genes appear to be highly
expressed in the bulk sample but are actually highly expressed in only one of the neoplastic subpopulations. In contrast, the third gene appears to
show low expression in the bulk sample but is actually highly expressed among T-cells, which are proportionally low in abundance. In this manner,
single-cell measurements could enable the finer, unbiased characterization of transcriptional features that underlie important cancer phenotypes.
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and biological interpretation. Analyses dependent on the
identification of shared cell types and states are further
complicated by the presence of truly unique patient-
specific differences inherent to cancer. Although care
should be taken to plan experimental designs that

minimize batch effects—for example, some recent studies
have used multiplexed scRNA-seq to pool cells from
multiple samples into a single batch for sequencing18–21—
this may not be possible in practice due to logistical
limitations concerning sample acquisition, time

Fig. 2 Single cell RNA-seq workflow and downstream computational analyses. High-throughput single-cell transcriptomic technologies such as
single-cell RNA sequencing generally begin with experimental workflows tailored to distinct tumor and tissue types (dissociating, sorting, and
isolating cells, etc.), which ultimately result in sequences that can be aligned, quantified, quality control (QC) filtered, and normalized in different ways
to enable a number of downstream computational analyses, such as clustering analysis to identify transcriptionally distinct cell types and
subpopulations, allelic analysis to identify single nucleotide variants (SNVs, indicated with a star in the read pileup) or copy number variants (CNVs),
trajectory analysis, splicing detection, or the inference of tumor-microenvironmental (TME) interactions.
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Fig. 3 Unified clustering analysis. a The clustering of cells from different samples across diverse conditions may result in cells being aggregated by
sample, condition, or other technical factors such as the batch rather than the cell types of interest. The top illustration shows a 2D reduced
dimensional representation (e.g., tSNE) in which each point is a cell and is colored according to the sample, condition, or batch label. The bottom
illustration shows the same 2D embedding colored according to cell type. Cells are aggregated according to the sample, condition, or batch, rather
than the cell type, making the identification of shared cell types difficult. b Unified clustering analysis results in cells that are appropriately aggregated
by cell type, particularly for nonneoplastic cell types. c After the identification of common cell types, additional downstream analyses may be
performed. For example, compositional analysis comparing nonneoplastic cell-type proportions across three conditions, each with two replicates, can
be performed to show high correspondence within replicates but differences across conditions. d Differential expression analysis can also be applied
to one cell type, comparing each condition to all others, identifying differentially upregulated genes in each condition. e Unified clustering analysis
may be applied recursively to identify additional subtypes or states within nonneoplastic cell types (left) or shared transcriptional states among
neoplastic cells across patients.
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constraints, and limitations of sample processing and
handling.
To facilitate the identification of shared cell types and

states across datasets, a number of well-established batch
correction methods have been developed for bulk RNA-
seq data to remove batch effects by adjusting gene-
expression levels to make data from different batches
more comparable22,23. Batch correction is more difficult
for scRNA-seq data in which each sample may contain
different abundances of cell types, each with distinct gene
expression profiles. Therefore, it may not be appropriate
to apply the same global adjustment to all cells in a
sample. As an alternative approach, many computational
methods have been developed for the unified analysis of
multiple scRNA-seq datasets that explicitly model or
implicitly control for sample and batch-specific differ-
ences to identify shared aspects of transcriptional varia-
tion across datasets.
Computational methods for unified single-cell tran-

scriptomics analysis generally search for shared aspects of
transcriptional variation that can be aligned across data-
sets from multiple samples, batches, or conditions (Fig.
3b). Despite differences in their implementation and
algorithms, many methods share a similar conceptual
framework: each method begins by reducing the dimen-
sionality24 of the normalized gene-expression data to a
smaller set of features (e.g., latent space), aligning these
features across datasets, using the aligned features to
identify clusters of cells (that may be interpreted as cell
types), and finally using the aligned features and identified
clusters as the input for 2D visualization algorithms. For
example, MultiCCA25 identifies shared aspects of varia-
tion between pairs of datasets by iteratively applying
canonical correlation analysis24 to two datasets at a time
and adding additional samples at each iteration. The
canonical components are then adjusted using dynamic
time warping and serve as the input for graph-based
clustering algorithms and 2D visualization. Mutual
nearest-neighbor (MNN) Correct26, Scanorama27, and
Conos28 build MNN graphs between cells from different
datasets, where two cells are connected in the graph if
they are transcriptionally similar. These MNN graphs can
then be used directly to derive unified cluster annotation,
in the case of Conos, or applied to adjust the data prior to
serving as the input for clustering algorithms, in the case
of MNN Correct and Scanorama. A major limitation of
MultiCCA and MNN Correct is that these methods can
produce different results depending on the ordering of the
datasets in the analysis27. To overcome the ordering
limitation, Scanorama automatically finds a favorable
order, while Conos builds a joint MNN graph of all
datasets. However, when sample and data acquisition
occur continuously and in parallel with the analysis,
approaches such as MultiCCA, MNN Correct, and Conos

may make it more computationally efficient to incorpo-
rate additional datasets into the unified analysis without
rerunning all analyses on previously analyzed datasets. In
contrast, LIGER29 uses integrative nonnegative matrix
factorization30 (NMF) to split the full expression matrix
(of all datasets) into two parts: a matrix of shared factors
and a matrix of dataset-specific (batch-effect) factors.
Then, the shared factors serve as the input for graph-
based clustering algorithms and 2D visualization. A
notable limitation of all the aforementioned methods is
the use of a single categorical variable to encode batch
labels. The accommodation of multiple variables could be
relevant for cancer data analyses to enable the identifi-
cation of shared cell types and states across datasets with
additional clinically relevant features (e.g., patient sex, age,
and genetics) or additional dimensions such as time
points (e.g., pretreatment and posttreatment, time series)
or drug dosages. To this end, Harmony31 is able to
accommodate multiple categorical variables to encode
batch information. Harmony31 iteratively identifies clus-
ters of cells and applies local linear adjustments to these
cells while maximizing the diversity of batches within
clusters. Such unified analyses with Harmony have been
applied to scRNA-seq datasets of hepatocellular carci-
noma tumors and immune-relevant sites from multiple
patients and platforms to identify T-Regs, exhausted
CD8+ T cells, and subtypes of macrophages and DCs that
are shared across patients and enriched in cancer
samples32.
Alternatively, rather than explicitly taking into con-

sideration batch information, other computational meth-
ods for unified single-cell transcriptomics analysis learn a
function that maps a dataset onto a low-dimensional
latent space and then apply this function to map datasets
from different samples or batches onto the same space.
For example, scCoGAPS33 uses Bayesian NMF with prior
distributions designed to handle scRNA-seq data to dis-
cover latent spaces in a reference scRNA-seq dataset and
then uses projectR33 to project new scRNA-seq data onto
the learned latent spaces. Such methods thus rely on
identified latent spaces being free of batch effects rather
than explicitly controlling for batch-specific differences.
Such methods may be particularly computationally effi-
cient in the construction of a large reference or atlas
model that can then be applied to cells from a smaller
dataset under the assumption that the initial reference
model contains all possible cell types and states.
While the reliability of many unified single-cell tran-

scriptomic analysis methods has been tested by integrat-
ing datasets from many non-diseased tissues34, their
application to datasets from patients with cancer raises
additional concerns. The aforementioned computational
methods for the unified analysis of scRNA-seq datasets
work best when all datasets contain common cell types or
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states in similar proportions. For example, MultiCCA and
MNN Correct assume that all datasets contain at least one
shared cell type. However, due to prevalent inter- and
intratumoral heterogeneity, this assumption may no
longer be valid in a cancer setting. As such, these methods
may result in overcorrection when different cell types
from different samples are assigned to the same cluster in
the unified analysis and misinterpreted as the same cell
type. In addition to discrete cell types and cell states,
cancer datasets may also contain cells exhibiting smooth
developmental and evolutionary trajectories. Unified
analysis methods may result in another form of over-
correction when dataset integration fails to preserve the
topology of these biological trajectories31. Analyzing each
dataset individually using cluster annotations from unified
analysis can help to assess the quality of the unified
results.
After the identification of common cell types and states,

additional compositional comparisons or differential
expression analyses can be applied to characterize the
changes between different treatments, disease stages, or
other conditions. For example, generalized linear models
have been used to identify differential abundances in cell-
type proportions by comparing cases versus controls35,36

(Fig. 3c) and to identify differentially expressed genes
across culture conditions37 (Fig. 3d) while accounting for
important covariates using fixed effects for variables such
as sex and age and random effects for the patient and
batch. Accounting for covariates in a linear model with
unadjusted gene-expression data should be preferred for
differential expression analysis with adjusted gene-
expression data to avoid the identification of spuriously
significantly differentially expressed genes38.
Alternatively, newer approaches for unified single-cell

transcriptomics analysis based on deep neural networks
have been developed to enable batch correction, nor-
malization, imputation, dimensionality reduction, and
clustering for millions of cells simultaneously by fitting a
single generative model39–41. For example, scVI39 uses
deep neural networks to learn the parameters of a hier-
archical Bayesian model that is designed to separate bio-
logical signals from unwanted factors (e.g., batch effects)
while embedding the cells in a low-dimensional latent
space. The resulting latent space vectors can then serve as
the input for clustering algorithms and 2D visualization.
In contrast, SAUCIE40 uses a deep neural network in
which some of the layers are designed to perform cluster
annotation and 2D visualization, thereby eliminating the
need for additional clustering analysis of the latent space
vectors. Graphical processing units can also be used to fit
these deep neural network models more efficiently. While
these methods currently use a single categorical variable
to encode batch information, they could in theory be
extended to allow the inclusion of multiple categorical or

continuous variables. However, in contrast to matrix
factorization methods such as PCA, CCA, and NMF, in
which we can examine the contributions of each gene for
each factor, the latent spaces obtained from deep learning
methods may not be as easily interpretable. This raises
concerns such as overfitting to technical features or other
unwanted aspects of variation in the data. Therefore,
additional efforts are needed to demonstrate that latent
spaces from deep neural networks reflect biologically and
clinically relevant patterns in different cancer tissues42.
Once major cell types are identified across datasets,

recursive clustering may be applied to identify finer cell
states (Fig. 3e). Recursive clustering has been applied to
stromal43 as well as tumor-infiltrating myeloid cells44 in
lung cancer to first distinguish different major cell types
and subsequently reanalyze each cell type independently
to identify finer subtypes and states, including those that
are enriched or uniquely present in cancer samples. Such
recursive clustering may become more important as the
number of cells in new datasets increases. In integrative
analyses of cancer datasets from multiple patients, non-
neoplastic cells may cluster by cell type, while neoplastic
cells segregate by patient4,45 due to the degree of inter-
patient heterogeneity for neoplastic versus non-
neoplastic cells. Therefore, when performing such uni-
fied analyses across patients, neoplastic cells may need to
be considered separately from nonneoplastic cells to
identify shared aspects of transcriptional heterogeneity
and common cell states. To guard against over-
correction, each sample should be analyzed individually
to ensure that the transcriptional programs associated
with the states identified from a unified analysis are also
present within individual samples. Such integrative
analyses using NMF24 have been applied to identify the
gene modules that correspond to cell cycle and aberrant
developmental programs that mark distinct neoplastic
subpopulations and are shared across patients in studies
of both diffuse midline gliomas46 and head and neck
squamous cell carcinomas47.

Distinguishing neoplastic from nonneoplastic cells
In the context of cancer, one unique analytical challenge

is distinguishing neoplastic cells (e.g., tumor cells) from
nonneoplastic cells (e.g., immune cells, endothelial cells,
and fibroblasts). In some studies, this challenge is cir-
cumvented by enriching neoplastic cells and/or depleting
nonneoplastic cells by sorting. However, sorting is some-
times impossible due to technical limitations (e.g., a lack of
suitable markers). Furthermore, sorting may be undesir-
able when the aim is to characterize neoplastic cells in
conjunction with nonneoplastic cells in the surrounding
tumor microenvironment. Thus, a number of computa-
tional methods and approaches have been developed to
distinguish neoplastic cells from nonneoplastic cells.
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As neoplastic cells generally exhibit extensive altera-
tions in a variety of biochemical pathways and oncogenic
programs emblematic of cancer3, they may be sufficiently
transcriptionally distinct from nonneoplastic cells that
they can be segregated through clustering analysis12. To
identify transcriptionally distinct cell clusters, a number
of computational methods for analyzing individual
datasets have been developed48–52 and reviewed15,53,54.
Likewise, a number of computational methods for unified
analysis across many datasets were described in the
previous section. In the context of cancer, these cell
clusters may represent different neoplastic or non-
neoplastic cell types and states. While such methods can
broadly identify cell clusters, annotating these clusters as
either neoplastic or nonneoplastic often proves more
challenging.
In certain cancers, the detection of distinct marker

genes or combinations of marker genes can distinguish
neoplastic from nonneoplastic cells (Fig. 4a). For example,
as multiple myeloma cells are marked by CD38+/CD138+

antigen expression, they could be distinguished by the
codetection of high CD138 (SDC1) and CD38 gene
expression in scRNA-seq data. However, scRNA-seq data
may be subject to numerous technical artifacts such as
drop-outs, when a gene is expressed but not detected55, or
high sparsity, rendering such binary classification based
on marker detection liable to false negatives. Furthermore,
for other cancers, the detection of marker genes alone is
insufficient to distinguish neoplastic and nonneoplastic
cells. For example, in a study of pancreatic ductal carci-
noma, clustering analysis produced multiple cell clusters
identified as ductal cells based on the expression of ductal
marker genes56. Without additional information, this
clustering analysis alone was unable to determine the
malignant status of the identified ductal cell clusters.
Although the upregulation of aberrant expression pro-
grams such as cancer-associated pathways (e.g., angio-
genesis and proliferation) may implicate certain cell
clusters, annotations based on pathway expression alone
may be ambiguous. This is because neoplastic cells can
also express genes and pathways typically associated with
canonical nonneoplastic cells in ways that we might not
expect. For example, an scRNA-seq analysis of glio-
blastoma identified transcriptionally distinct neoplastic
subpopulations exhibiting the upregulation of transcrip-
tional programs associated with expected oncogenic
programs such as oncogenic signaling, proliferation, and
hypoxia. However, the same analysis identified another
subpopulation of neoplastic cells exhibiting the upregu-
lation of complement/immune response programs typi-
cally associated with immune cells57. As such, orthogonal
evidence beyond marker gene or pathway expression is
often needed to confidently distinguish between neo-
plastic and nonneoplastic cells.

To this end, computational methods have been devel-
oped to identify DNA-level aberrations directly from
scRNA-seq data (Fig. 4b). Large-scale copy-number var-
iations (CNVs) can be inferred by comparing the
smoothed averaged gene-expression profiles of neoplastic
cells harboring CNVs to an appropriate normal tissue
reference57,58. The presence of deletions or amplifications
will on average lead to reduced or increased expression of
genes, respectively, within affected loci compared to copy-
neutral reference expression for the same cell type.
Hierarchical clustering of smoothed normalized expres-
sion magnitude deviations can distinguish cells harboring
CNVs from normal diploid cells. In a study of pancreatic
ductal carcinoma, such expression-based CNV inference
was used to show that one ductal cell cluster exhibited
higher CNV levels than another ductal cell cluster; in
combination with the upregulation of aberrant cancer-
related programs such as cell proliferation, migration, and
hypoxia, these findings implicated the former ductal cell
cluster as the malignant subpopulation56. Overall, CNV
inference from scRNA-seq data has been applied to dis-
tinguish neoplastic and nonneoplastic cells in many can-
cers, including a variety of gliomas46,57,59–61, melanoma45,
head and neck cancer47, breast cancer62, and multiple
myeloma58.
However, the reliability of such expression-based CNV

inference is dependent on how well the cancer expression
profile is matched to the normal reference, in terms of
both technical and biological factors58. An appropriate
normal reference is needed to ensure that the observed
deviations in expression magnitude are the result of
underlying copy number changes rather than platform- or
cell-type-specific differences. The identification of an
appropriate normal reference may be particularly chal-
lenging if the cancer cell type of origin is unknown. An
alternative computational approach for identifying CNVs
is based on the variant allele frequencies (VAFs) of het-
erozygous germline single-nucleotide polymorphisms
(SNPs)58. Although most scRNA-seq studies focus on
gene-expression counts, scRNA-seq also provides infor-
mation about SNPs by virtue of sequencing-based data.
Changes in copy number skew the observed VAFs12 in
scRNA-seq data such that the presence of deletions leads
to the persistent depletion of the lost allele, while ampli-
fication will lead to increased abundance of the amplified
allele on average. Since allele-based approaches rely on
high coverage of many SNP sites, data from scRNA-seq
protocols that can achieve full-transcript coverage (e.g.,
Smart-seq2) are best for these analyses. In contrast, the
analysis of data from high-throughput scRNA-seq pro-
tocols that capture only the 3′ or 5′ transcript ends will be
limited to the identification of larger whole-chromosome
and chromosome-arm-scale alterations. Furthermore,
allele-based approaches will not be able to confidently
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distinguish copy-neutral loss-of-heterozygosity from
deletions or to distinguish different numbers of copy-
number amplifications. Integrating allelic and expression
information can overcome these limitations and achieve
more robust probabilistic CNV inference58.
Nevertheless, some cancers do not harbor such large-

scale CNVs. Other smaller-scale DNA-level alterations
such as somatic point mutations can also be identified
from scRNA-seq data and used to distinguish neoplastic
cells (Fig. 4c). However, the detection of somatic point
mutations from scRNA-seq data is limited to mutations
within expressed exons at sites with sufficient read cov-
erage. This lack of coverage at the mutation site of interest
is a particular limitation for scRNA-seq protocols invol-
ving 3′ or 5′ rather than full-transcript sequencing. Like-
wise, both technical and biological factors that result in
the selective detection of a nonmutant allele (e.g., uneven
amplification63, prevalent stochastic mono-allelic expres-
sion and detection64,65, and allelic exclusion66) limit our
ability to confidently call heterozygous point mutations
using scRNA-seq alone46,67. As such, alternative protocols
and technologies have been developed to combine
scRNA-seq with targeted locus-specific amplifica-
tion46,68,69 or targeted quantitative polymerase chain
reaction-based mutation detection61,67 to enable the
robust detection of selected point mutation status directly
from or in conjunction with scRNA-seq data. Further-
more, in the calling of somatic point mutations from
scRNA-seq data, false positives that may be caused by
RNA editing must also be considered. The reduction of
false positives may be achieved by limiting the analysis to
the mutations and variants identified through the WES of
the same tumor sample or to mutations known to be
recurrent in relevant cancers from databases such as
COSMIC70. Some computational approaches have also
been specifically designed to call point mutations from
RNA-seq71 and scRNA-seq data72,73 while taking into
consideration such potential false positives and negatives.
Beyond distinguishing neoplastic cells from non-

neoplastic cells, CNV inference and somatic mutation
calling can be used to distinguish genetically distinct
neoplastic subclones. Notably, by inferring such altera-
tions from scRNA-seq data, the transcriptional profiles of
genetic subclones can be directly compared to char-
acterize the transcriptional consequences of observed
genetic alterations (Fig. 4d). Nevertheless, studies have
shown that transcriptional heterogeneity among neo-
plastic cells does not necessarily reflect observed genetic
relationships58,67,74,75, highlighting the need for the fur-
ther assessment of the interplay of genetic and tran-
scriptional heterogeneity.
Nevertheless, some cancers are not well defined by

either large-scale CNVs or somatic point mutations. For
example, chronic myeloid leukemia (CML) cells are

Fig. 4 Distinguishing neoplastic and nonneoplastic cells. a The
detection of marker or fusion genes that are uniquely upregulated or
expressed in neoplastic cells may be used to identify neoplastic cells. In
this illustration, many neoplastic cells exhibit high expression (red) of a
marker or fusion gene, although dropouts or other technical factors
result in the detection of low or no expression (blue) in other neoplastic
cells in the same cluster. b Copy-number variant (CNV) inference may
also be used to identify neoplastic cells. Normalized smoothed gene
expression magnitudes and variant allele frequencies can be used to
infer the probability that a cell harbors CNVs. Neoplastic cells exhibit
higher probabilities of harboring any CNVs, as expected. c Somatic point
mutation calling may be used to identify neoplastic cells. The top read
pileup for a cell shows an example in which both the mutant and
reference alleles are detected, indicating that the cells harbors the
mutation. The middle read pileup for a cell shows an example in which
the mutant allele is not detected, which could indicate that the cell does
not harbor the mutation or that there is allelic dropout of the mutant
allele. Alternatively, the bottom read pileup shows an example where
the mutation site presents no read coverage, and thus, no mutation call
can be made. d The inference of CNVs and other genetic alterations
directly from RNA-sequencing data enables the direct interrogation of
transcriptional differences among genetic subclones. A clonal CNV
distinguishes neoplastic from nonneoplastic cells and is also marked by
high expression of marker and fusion genes. In addition, a subclonal CNV
is present. Differential expression analysis may be applied to directly
identify differentially expressed genes between genetic subclones.
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generally defined by the presence of the BCR-ABL fusion
gene. While gene fusions may be detected in data gen-
erated with full-transcript scRNA-seq protocols (e.g.,
SmartSeq2), limitations in detection sensitivity can result
in false negatives76. To robustly detect gene fusions, the
scRNA-seq library preparation protocol can be modified
to include primers for the targeted amplification of spe-
cific gene fusions. One study of CML successfully applied
this approach with a primer targeting the BCR-ABL fusion
gene to confidently distinguish CML cells76. Ultimately, a
combination of these approaches should be used and can
even be integrated with machine-learning classifiers69 to
identify bona fide neoplastic cells.

Inferring communication with the tumor
microenvironment
Neoplastic cells exist among the heterogeneous compo-

sition of nonneoplastic cell types and states within a tumor
microenvironment that may contribute to tumor evasion
and progression77, angiogenesis78, and therapeutic resis-
tance79. scRNA-seq provides the opportunity to character-
ize the many cell types in the tumor microenvironment,
from stromal fibroblasts to diverse immune subtypes, in a
high-throughput and mostly unbiased manner. In a study of
the lung tumor microenvironment, scRNA-seq analysis
identified functionally distinct fibroblast subtypes as well as
remodeled tumor endothelial cells that downregulate anti-
gen presentation and contribute to immune tolerance and
suppression43. Similarly, the scRNA-seq analysis of tumor-
associated macrophages has been used to distinguish
between proinflammatory macrophages that resist tumor
progression and tissue-reparative macrophages that pro-
mote tumor growth and metastasis in breast cancer80, lung
cancer81, and hepatocellular carcinoma32. Furthermore, the
scRNA-seq analysis of tumor-infiltrating T cells has iden-
tified notable subpopulations in different cancers that may
be potential targets for novel immune checkpoint inhibi-
tors, including exhausted T cells in lung cancer43, tissue-
resident memory T cells in breast cancer82 and mela-
noma83, and regulatory T cells in non-small-cell lung can-
cer84 and colorectal cancer85.
Beyond characterizing heterogeneity in the tumor

microenvironment, computational methods have also
been developed to infer putative communication between
different cell types. Since scRNA-seq approaches require
single-cell suspensions, the spatial context of the cell
arrangement in the original tissue is lost. Therefore,
computational methods for inferring cell-cell commu-
nication from scRNA-seq data require evidence without
information on the spatial proximity of cells. To infer
putative communication between cell types, cell–cell
communication methods have generally relied on the
comparison of the expression levels of a receptor gene in
one cell type and a corresponding ligand gene in another

cell type47,86–88 using a curated list of known receptors
and corresponding ligands89 (Fig. 5a). For example, for
each known receptor–ligand pair, CellPhoneDB calculates
the mean expression of the receptor gene in one cell type
and the mean expression of the ligand gene in another cell
type88. These observed means are then assessed for sta-
tistical significance by comparing them to a null dis-
tribution, where means are recomputed after randomly
permuting the cell-type labels of all cells (Fig. 5b). A
graph-based approach for generating a null distribution
has also been used to assess statistical significance90.
When analyzing a large number of scRNA-seq datasets,
putative communication can also be identified by com-
puting the correlation of receptor gene expression in one
cell type with the corresponding ligand gene expression in
another cell type across all scRNA-seq datasets90 (Fig.
5c–e). More recently, these ideas have been extended by
using a computational method known as NicheNet91,
which integrates gene expression data with prior knowl-
edge of intracellular signaling and gene regulatory net-
works. This method identifies ligands in one cell type
associated with the expression of genes downstream of
the corresponding receptor in another cell type.
Approaches focused on scRNA-seq datasets alone can

be limited in terms of their statistical power due to the
limited number of patients and samples profiled. To take
advantage of the greater availability of large collections of
bulk RNA-seq samples, computational deconvolution
approaches have been developed to infer the proportions
of different immune and stromal cell bulk RNA-seq
samples after the identification of cell-type-specific mar-
kers from scRNA-seq data92. The fundamental assumption
of deconvolution is that a bulk sample is a mixture of
multiple transcriptionally distinguishable cell types. Most
deconvolution methods model the bulk gene-expression
matrix as the product of an scRNA-seq gene expression
reference (observed) and estimated cell-type proportions
for all samples (unobserved) using different types of
regression models, such as linear regression93 or support
vector regression94,95. Different approaches for cell-type
marker gene selection approaches can influence the
accuracy of cell-type proportion estimates. Marker genes
can be selected in many ways, including differential
expression analysis or the use of the Gini index96. Like-
wise, methods can weight genes by variability97 or incor-
porate patient-specific covariance98 to improve marker
selection. Accurate proportion estimation for tran-
scriptionally similar cell types is particularly challenging.
To address the collinearity of gene expression profiles for
similar cell types, one approach is to remove the union of
the most highly expressed genes among similar cell types
from marker selection93. Another approach is to first
estimate the proportion of a group of transcriptionally
similar cell types and then recursively select markers and
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obtain estimates for finer cell types within each group98.
Such deconvolution approaches have been applied to
estimate the proportion of infiltrating immune cells for 23
cancer types from The Cancer Genome Atlas (TCGA), in
which increased immune infiltration was found to be
associated with longer median survival93. An important
caveat to consider in any deconvolution analysis is that
cancer cells may aberrantly express genes associated with
canonical immune or nonneoplastic cell types. Therefore,
to achieve accurate proportion estimates, the incorpora-
tion of neoplastic cells in marker gene selection is neces-
sary to help ensure that the detection of marker genes
reflects the underlying proportions of immune cells rather
than aberrant expression by neoplastic cells.

Delineating tumoral and microenvironmental evolution
While single-cell transcriptomic profiling techniques

such as scRNA-seq offer transcriptome-wide molecular
measurements at a single-cell resolution, these measure-
ments ultimately represent a single snapshot in time. This

lack of temporal information is particularly limiting for the
study of cancer and other dynamic processes due to the
continuous nature of cancer evolution and, more broadly,
cellular development. Although scRNA-seq provides a
snapshot of each individual cell at a single point in time, a
snapshot of many cells representing a range of evolu-
tionary stages can allow us to order these cells in pseu-
dotime and within trajectories. To infer this pseudotime
ordering of cells within putative trajectories, a number of
computational trajectory inference methods have been
developed99–101, compared102, and reviewed74,103. In the
context of cancer, trajectory inference analysis has been
applied to scRNA-seq data from healthy and cancerous
kidneys. The analysis identified two divergent transcrip-
tional trajectories, one of which corresponds to the
development of nephrogenic rest cells and the other to
Wilms cancer cells originating from cells of the ureteric
bud, consistent with the hypothesis that Wilms tumor cells
develop from aberrations in fetal nephrogenesis104. Like-
wise, trajectory inference analyses of infiltrating T cells in
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liver cancer32,105 and small-cell lung cancer84 have iden-
tified cellular state transitions between proliferating/acti-
vated and exhausted states.
While trajectory inference methods are able to position

cells along some axes, current methods do not estimate
the underlying temporal kinetics regarding the rate or
direction of progression through inferred trajectories.
Prior knowledge regarding gene expression patterns may
be useful for establishing the directionality of trajectories
representing normal developmental processes, where we
can assume that a trajectory starts from cells expressing
stemness-related pathways and ends at cells expressing
maturation-related pathways. However, such assumptions
may no longer be valid in a cancer setting. RNA velocity
analysis can address these limitations by providing
directionality to inferred trajectories. RNA velocity ana-
lysis utilizes the relative ratio between intronic (i.e.,
unspliced, immature) and exonic (i.e., spliced and mature)
reads in scRNA-seq data to infer the rate of change in
transcript abundance to estimate the future transcrip-
tional state of a cell106 (Fig. 6a, b). The observed versus the
predicted future transcriptional state for each cell or group
of transcriptionally similar cells can be projected onto
inferred trajectories to provide putative directionality,
which may be particularly useful in rooting trajectories as
well as distinguishing between divergent versus con-
vergent evolutionary trajectories (Fig. 6c, d). For example,
the application of RNA velocity analysis to dendritic cells
(DCs) from hepatocellular carcinoma suggested that two
different conventional DC subpopulations have the
potential to converge and transition into LAMP3+ tumor-
associated DCs32.
While the application of trajectory inference and RNA

velocity analysis offers the potential to identify the altered
mechanisms of cell development in cancer pathogenesis, a
number of precautions should be considered when
applying such analyses in a cancer setting, especially when
interpreting results for neoplastic cells. Trajectory infer-
ence relies on the adequate representation of cells in
different developmental stages, such that the absence of
intermediate stages may distort the inferred temporal
dynamics107. This problem may be particularly pro-
nounced in cancer, where scRNA-seq may capture mul-
tiple transcriptionally distinct subpopulations of cells but
not the ancestral cells that gave rise to these popula-
tions74. Despite these challenges, the application of RNA
velocity analysis to isocitrate dehydrogenase (IDH) wild-
type glioblastoma cells has putatively identified an inter-
mediate glioma stem-like cell (GSC) subpopulation that
may transition from a mesenchymal to a proneural phe-
notype, implicating mesenchymal GSCs as the progeni-
tors of proneural GSCs in IDH wild-type glioblastomas108.
Nevertheless, RNA velocity analysis assumes that
increased relative intronic expression reflects the presence

of unspliced nascent transcripts. In a cancer setting,
however, mutations in the splicing machinery may cause
aberrant alternative splicing, resulting in differentially
regulated intronic retention that violates this assumption.
For example, in chronic lymphocytic leukemia as well as
other myeloid neoplasms, recurrent mutations in splicing
factor genes such as SF3B1, U2AF1, SRSF2, and ZRSR2
have been observed109 and shown to cause a wide variety
of aberrant alternative splice variants110,111. In such a
scenario, RNA velocity models should explicitly avoid
introns known to be impacted by aberrant splicing by
excluding these introns from unspliced gene quantifica-
tion or removing these genes from the model altogether.
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an individual gene such as Gene X, RNA velocity is modeled across a
population of cells based on the observed spliced (e.g., exonic) and
unspliced (e.g., intronic) mRNA abundances, plotted on the x- and
y-axes, respectively. In this model, cells, illustrated as points,
upregulating expression of the gene are expected to exhibit a
relatively higher proportion of unspliced mRNA compared to spliced
mRNA, while cells downregulating expression of the gene are
expected to exhibit a relatively lower proportion of unspliced mRNA
compared to spliced mRNA. b Such models of transcriptional
dynamics can be used to extrapolate expression levels for many genes
at a future time point. In this illustration, the current high-dimensional
observed transcriptional state for a cell is visualized in a heatmap in
which each column represents a gene, where red indicates higher
expression, and blue indicates lower expression. The predicted future
transcriptional state for the same set of genes based on the RNA
velocity model is shown below. c The future transcriptional state for
each cell, as predicted by the RNA velocity models, can be projected
to a lower-dimensional embedding (e.g., tSNE and PCA). An arrow can
be used to connect the observed transcriptional state and the future
predicted transcriptional state in the lower-dimensional embedding
to visualize velocities. This can be performed for each cell individually,
as a gridded velocity field, or as a single directed principal curve, as
illustrated. d RNA velocity analysis may be applied to distinguish
between different trajectory patterns, such as a linear progression
through different states, versus branching or convergent trajectories,
as illustrated. RNA velocity analysis may also be applied to identify the
roots or origins of cellular trajectories, illustrated here as stars.
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Discussion and outlook
The application of single-cell transcriptomics in cancer

presents a number of unique analytical challenges and
opportunities. In this review, we focused on emerging
themes in the computational analysis of single-cell tran-
scriptomics data in cancer research, highlighting unique
challenges and opportunities.
However, despite the promise of single-cell tran-

scriptomics and opportunities for computational method
development in cancer research, discoveries will always be
fundamentally limited by what can be measured. Notably,
although a variety of protocols exist for scRNA-seq ana-
lysis, nearly all involve poly-A selection, thereby limiting
the ability to examine non-polyadenylated transcripts,
such as small nucleolar RNAs, histone mRNAs, pre-
mRNAs, and long noncoding RNAs, which may play
diverse regulatory roles in cancer3. Even within poly-A
selection scRNA-seq protocols, droplet-based protocols
that are restricted to only 3′ or 5′ ends will inherently be
more limiting for allele-based CNV inference, mutation
calling, and fusion gene detection compared to full-
transcript single-cell RNA-seq protocols. Furthermore,
some cell types (e.g., neutrophils, epithelial cells, and
neurons) may not be compatible with the dissociation,
encapsulation, or other processing steps of all scRNA-seq
protocols. Alternative protocols such as single-nucleus
RNA-seq112 (snRNA-seq) may be applied to these cell
types and to cells from frozen specimens. Different sam-
ple preservation techniques, such as the freezing or for-
malin fixed-paraffin embedding of tissues commonly used
for cancer samples, may require different protocols and
introduce different limitations113. Future unified analyses
of the same cancer samples with protocols (whole cell vs.
nuclei, fresh vs. frozen) will help to further elucidate the
precise limitations and biases introduced by each proto-
col. As always, care must be exercised in selecting the
protocol that is best able to address the question of
interest while remaining aware of its inherent limitations,
to avoid drawing spurious biological conclusions.
Although transcriptional heterogeneity has been

observed in a variety of cancers, the extent to which this
transcriptional heterogeneity can be mapped to under-
lying genetic, epigenetic, or spatial contextual causes and
their interplay remains unclear. While the transcriptional
impact of genetic variants may be assessed to some degree
through the direct inference of genetic information from
scRNA-seq data, as previously discussed, the identifica-
tion of associations with other aspects of heterogeneity
such as epigenetic or spatial heterogeneity may require
the integration of additional data, technologies, and
computational methods. For example, to investigate
the role of epigenetic heterogeneity and its interplay
with transcriptional heterogeneity at the single-cell
level, a number of multiomic computational analysis

approaches29,114 have been developed to enable unified
analysis across transcriptomic and epigenetic data mod-
alities, albeit for different cells. However, these approa-
ches generally rely on linking functions to perform
mapping between data modalities, such as mapping
between gene expression and promoter or gene body
accessibility under the assumption that greater accessi-
bility correlates with a higher gene expression magnitude.
In a cancer setting, however, these assumptions may no
longer be valid when regulatory factors are mutated. As
such, greater consideration may be necessary to ensure
that linking functions are appropriate when applying such
computational data integration approaches in a cancer
setting. New technologies and protocols are also being
developed to enable multimodal measurements, including
simultaneous transcriptomic and epigenomic measure-
ments, within a single cell53,115,116. In conjunction with
novel computational analysis approaches, such technolo-
gies offer the potential to contribute to our growing
understanding of these different aspects of cancer het-
erogeneity and their interplay. Likewise, to investigate the
role of the spatial context, a number of imaging a number
of imaging technologies have been developed technologies
have been developed to enable the targeted spatially
resolved single-cell transcriptomic profiling of 100–1000 s
of genes117–119. More recently, these technologies have
been expanded to a near-genome-wide scale120–122. We
anticipate that such spatially resolved single-cell tran-
scriptomic data generated from these different technolo-
gies will require new computational pipelines and
methods for proper processing (e.g., RNA decoding and
cell segmentation), quality control, and normalization.
Furthermore, the computational methods for analyzing
scRNA-seq data may need to be modified to develop
in situ analogs appropriate for spatially resolved single-
cell transcriptomics data. RNA velocity analysis of
scRNA-seq data that leverages the ratio of intronic and
exonic gene expression has been modified to create an
in situ analog that leverages the ratio of nuclear and
cytoplasmic gene expression120. In conjunction with novel
computational analysis approaches, these emerging tech-
nologies offer the potential to contribute to our growing
understanding of these different aspects of cancer het-
erogeneity and their interplay.
As the numbers of analyzed cells and samples continue to

increase exponentially, particularly because of international
and collaborative efforts such as the Human Cell Atlas123,
Human Developmental Cell Atlas, Pediatric Cell Atlas124,
HuBMAP125, Human Tumor Atlas Network, LifeTime EU
Flagship, and others, there is a need to improve the scal-
ability of computational methods through implementation
improvement and algorithmic optimization. While the
application of these computational methods to a cancer
setting may present a number of unique challenges,
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additional efforts are ultimately needed to iterate between
data-driven hypothesis generation and the orthogonal
validation of computational predictions. Despite these
challenges, single-cell transcriptomics analysis presents
tremendous opportunities to contribute to our under-
standing of cancer heterogeneity, pathogenesis, evolution,
and microenvironmental interactions to lay a foundation
for new therapeutic innovations.
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