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Supplementary Software) evaluates the coordinated expression 
variability of genes in both annotated pathways and automati-
cally detected gene sets. Gene set testing with methods such as 
GSEA14 has been widely used for differential expression analysis 
to increase statistical power and uncover likely functional inter-
pretations. A similar rationale can be applied in the context of 
heterogeneity analysis. For example, whereas cell-to-cell variability 
in the expression of a single neuronal differentiation marker such 
as Neurod1 may be considered noisy and inconclusive, coordinated 
upregulation of many genes associated with neuronal differentia-
tion in the same subset of cells could provide a prominent signa-
ture distinguishing a subpopulation of differentiating neurons. We 
used PAGODA with published data sets to recover both new and 
known subpopulations and suggest their likely functional roles.

Transcriptional diversity in mouse neural progenitor cells 
(NPCs) is likely to depend on a variety of intrinsic and external 
factors that include programmed cell death15, genomic mosai-
cism16,17 and exposure to signaling lipids18. Using single-cell 
RNA-seq (scRNA-seq) to assess a cohort of cortical NPCs from an 
embryonic mouse, we found that PAGODA recovered the known 
neuroanatomical and functional organization of NPCs. Our 
approach allowed us to identify multiple aspects of transcriptional 
heterogeneity in the developing mouse cortex that are difficult to 
discern with existing heterogeneity-analysis approaches.

To characterize significant aspects of transcriptional  
heterogeneity, PAGODA uses a series of steps (Fig. 1 and Online 
Methods). First, the effective sequencing depth, drop-out rate 
and amplification noise of each cell are estimated via a previously 
described mixture-model approach19 with minor enhancements 
(step 1; Fig. 1). Using these models, the observed expression  
variance of each gene is renormalized on the basis of the  
expected genome-wide variance at the appropriate expres-
sion magnitude (step 2). Batch correction is also performed at 
this stage. The resulting residual variance, modeled by the χ2  
statistic, effectively distinguishes subpopulation-specific 
genes (Supplementary Notes 1 and 2) and determines the  
contribution of each gene to subsequent PCA calculations.

PAGODA then examines an extensive panel of gene sets to  
identify those showing a statistically significant excess of  
coordinated variability (step 3). The gene sets include annotated 
pathways, such as Gene Ontology (GO) categories, as well as 
clusters of transcriptionally correlated genes found in a given 
data set (de novo gene sets). The prevalent transcriptional signa-
ture of each gene set is captured by its first principal component 
(PC), with weighted PCA used to adjust for technical noise. If 
the amount of variance explained by the first PC of a given gene 
set is significantly higher than expected (step 4, correcting for 
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the transcriptional state of a cell reflects a variety of biological 
factors, from cell-type-specific features to transient processes 
such as the cell cycle, all of which may be of interest. however, 
identifying such aspects from noisy single-cell rna-seq data 
remains challenging. We developed pathway and gene set 
overdispersion analysis (PaGoda) to resolve multiple, potentially 
overlapping aspects of transcriptional heterogeneity by testing 
gene sets for coordinated variability among measured cells.

Single-cell transcriptome measurements1,2 provide an unbiased 
approach for studying the complex cellular compositions of 
healthy and diseased tissues3–9. High levels of technical noise10 
and a strong dependence on expression magnitude pose difficul-
ties for principal-component analysis (PCA) and other dimen-
sionality reduction approaches such as the Gaussian process latent 
variable model (GP-LVM)11 and t-distributed stochastic neighbor 
embedding (t-SNE)12. Even when cell-to-cell differences expose 
prominent biological processes taking place in the measured cells, 
such as cell cycle or metabolic processes, these processes might 
not be of primary interest6. Such cross-cutting transcriptional 
features represent alternative ways to classify cells and pose a 
challenge for the commonly used clustering approaches that aim 
to reconstruct a single subpopulation structure4–6,13. Partitioning 
methods such as k-means clustering and the specialized BackSPIN 
algorithm5 may, for example, classify cells first on the basis of cell 
cycle phase, rather than tissue-specific signaling state, if the cell 
cycle differences are more pronounced.

Here we describe PAGODA, an alternative approach for analyzing  
transcriptional heterogeneity that aims to detect all statisti-
cally significant ways in which measured cells can be classified. 
PAGODA (available at http://pklab.med.harvard.edu/scde/ and as 
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multiple hypotheses), the gene set is said to be ‘overdispersed’ 
and is included in the subsequent analysis.

Many PCs will separate cells in a similar way, either because the 
same genes drive them or because multiple biological processes 
distinguish the same subsets of cells. To provide a nonredun-
dant view of transcriptional heterogeneity, PCs from significantly 
overdispersed gene sets are clustered, and those with similar gene 
loadings or cell-separation patterns are combined to form a single 
‘aspect’ of heterogeneity (step 5; Supplementary Fig. 1). Major 
aspects of transcriptional heterogeneity can be explored numeri-
cally or through an interactive web browser interface (step 6). 
As we illustrate below, examining individual aspects and their 
relationships can provide insights and functional clues that are 
not apparent with the most prominent cell classification. Finally, 
if one or more aspects of transcriptional heterogeneity are deter-
mined to be extraneous to the biological context, there is an 
option to control for them explicitly (step 7).

To illustrate the use of PAGODA on a complex cell population, 
we re-examined scRNA-seq data for 3,005 cells from mouse cor-
tex and hippocampus5. This extensive data set covered a variety of 
cell types with distinct expression signatures. PAGODA revealed 
nine major aspects of heterogeneity that distinguish the seven 
top-level classes and two lower-level subpopulations originally 
identified by BackSPIN5, a recursive partitioning method (Fig. 2).  
The functional interpretation of the identified aspects was 
evident from the identity of the overdispersed GO categories.  
The most significant aspect separated oligodendrocytes, which 
are easily distinguished by strong overdispersion of myelina-
tion-related pathways. Similarly, overdispersion of immune, 
vascular and muscle-associated GO-annotated gene sets iden-
tified microglia, vascular endothelial and mural subpopulations, 
respectively. Other cell types, such as ependymal cells and dif-
ferent types of neurons, were distinguished by de novo gene 
set signatures, with most overdispersed genes revealing their 
identity (for example, Gad1, Tbr1 and Gabra5).

Aspects distinguishing many of the cell types seemed to overlap, 
most frequently with the myelination signature. For instance, a 

subset of 35 cells showed prominent expression of both immune-
response genes characteristic of microglia and genes responsible 
for production of the myelin sheath (Fig. 2; interactive PAGODA 
results can be found at http://pklab.med.harvard.edu/scde/
pagoda.links.html). Similarly, a myelin-associated expression 
signature was observed for a subset of vascular cells, astrocytes, 
pyramidal neurons and interneurons. These hybrid signatures 
are most likely to correspond to cases in which two different cells 
were captured together (co-occurrence frequencies are presented 
in Supplementary Fig. 2). BackSPIN and other partitioning 
methods would need to classify such cells on the basis of a single 
signature or isolate them as a separate class without exposing their 
relationship to other groups. In contrast, PAGODA can expose 
multiple alternative classifications of a given cell.

We further evaluated PAGODA’s performance by reanalyzing 
data sets that were used to present alternative methods of hetero-
geneity analysis4,6,20, recovering previously identified subpopu-
lations and identifying additional biologically relevant features 
(Supplementary Note 3). In particular, PAGODA’s ability to asso-
ciate a given cell with multiple, potentially independent aspects of 
transcriptional heterogeneity allows one to focus on biologically 
relevant subpopulations that are distinguished by subtle transcrip-
tional variation. For instance, in reanalyzing data for mouse CD4+ 
T cells that were used to present an elegant GP-LVM approach6, 
PAGODA successfully recovered Il4ra-Il24 response and a  
closely aligned glycolysis aspect in addition to a prominent  
mitosis-associated signature, without requiring explicit correction 
steps. Furthermore, PAGODA revealed a prominent subpopulation 
of cells exhibiting an expression signature typical of dendritic cells 
that had not been observed previously.

As heterogeneity among NPCs can influence downstream neu-
ral diversity, we performed Smart-Seq on 65 NPCs isolated from 
the cerebral cortex of mice at embryonic day 13.5 (E13.5; Online 
Methods). The most significant aspect of heterogeneity identified 
by PAGODA reflected gradual induction of the genes associated 
with neuronal maturation and growth (Fig. 3a). Approximately 
half of the cells expressed Dcx, Sox11 and other known markers 
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figure 1 | Overview of PAGODA. Transcriptional heterogeneity is analyzed in seven steps. (1) Error models are fit for each cell19. A model fit for a cell is 
shown, separating drop-out and amplified components with the 95% confidence envelope (CE) of the amplified component. (2) The residual expression 
variance for each gene is determined relative to the transcriptome-wide expectation model (red curve), taking into account the uncertainty in the 
variance estimate for each gene by determining the effective degrees of freedom (kg) for the χ2 distribution. CV, coefficient of variation. (3) Weighted 
PCA is performed on annotated gene sets and on de novo gene sets determined on the basis of correlated expression in the current data set. (4) Cell 
PC scores of overdispersed gene sets (those with PC variance significantly higher than expected) are identified as significant aspects of heterogeneity. 
(5) Redundant aspects are grouped to provide a succinct overview of heterogeneity. (6) A web interface is used to navigate the identified aspects of 
heterogeneity, associated gene sets and gene expression patterns. (7) Aspects of heterogeneity deemed artifactual or extraneous with respect to the 
biological question can be controlled for in a subsequent iteration.
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figure 2 | PAGODA analysis of data from  
3,005 mouse cortical and hippocampal cells5. 
The dendrogram shows overall clustering and  
the first row indicates group assignments  
from the original analysis5. The rows below 
reflect the top nine significant aspects of 
heterogeneity (P < 0.05) detected by PAGODA  
on the basis of gene sets defined by GO 
annotations. Aspect scores (Cell PC score)  
are oriented so that high values generally 
correspond to increased expression of  
associated gene sets. Row labels summarize  
key functional annotations of gene sets  
in each aspect. Also shown are expression 
patterns of top-loading genes for innate immune 
response (from the aspect distinguishing 
neuroglia) and myelin sheath (distinguishing 
oligodendrocytes). A population of ~35 cells 
expressing both signatures is marked by a green 
bar and probably represents capture of two 
associated cells of different types. The images 
at the bottom show the microfluidic traps 
corresponding to some of the dual-signature 
cells, along with cells exhibiting only the oligodendrocyte signature (leftmost two images). Green numbered boxes below the uppermost panel highlight 
cells showing a combination of signatures of oligodendrocytes and other cell types (1–5 denote, respectively, vascular endothelial cells, astrocytes, CA1 
neurons, Gad1/2 interneurons and neuroglia).

of neuronal maturation, with the most mature subset express-
ing genes involved in neuronal maturation and growth cones 
(Neurod6 and Gap43). Such cells maintain expression of some 
progenitor markers (for example, vimentin) and therefore prob-
ably represent developing, committed neurons. In contrast, the 
set of early NPCs exhibits strong M- and S-phase signatures that 
are absent from the more mature NPCs, as well as upregulation 

of genes characteristic of an early progenitor state21 (Sox2, Notch2 
and Hes1), captured by the “negative regulation of neuronal dif-
ferentiation” and “neural tube development” GO categories.

Maturation of neuronal progenitors is closely tied to the spatial 
organization of the developing cortex22. We used spatial expres-
sion patterns23 of genes differentially expressed between early and 
maturing NPCs to reconstruct the most likely spatial distribution 
of these cells in the mouse brain (Fig. 3b and Online Methods). 
As expected, we found that early NPCs localized close to the ven-
tricular zone (VZ). We also used RNA-FISH (Online Methods) to 
examine two genes, Rpa1 and Ndn, of unknown relationship to the 
embryonic cerebral cortex (Supplementary Fig. 3). Consistent 
with the predicted pattern, Rpa1 was most prominent in prolifera-
tive regions. Ndn localized in postmitotic regions (especially the 
cortical plate), as well as in rare cells within the subventricular 
zone (SVZ; Supplementary Fig. 3).

An additional subset of NPCs was distinguished by their 
expression of Eomes, Neurod1 and other genes localized to the 
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figure 3 | Transcriptional heterogeneity of 65 NPCs in embryonic mouse 
cortex. (a) The top eight significant (P < 0.01) aspects of heterogeneity 
are shown, labeled by primary GO category or driving genes. The top aspect 
tracks the induction of neuronal maturation pathways, driving the overall 
subpopulation structure. Mitotic and S-phase signatures in early NPCs 
account for the next two most significant aspects, with the S-phase aspect 
incorporating closely matching expression patterns of genes responsible for 
NPC maintenance. The top panel summarizes key subpopulations of NPCs 
distinguished by the detected heterogeneity aspects. (b) Location of early 
versus maturing NPC classes within embryonic brain. In situ hybridizations 
in E13.5 mouse brain are shown for Tyro3 and Nfasc, with the two heat map 
rows at the top showing scRNA-seq expression. Computational prediction 
(rightmost panels in image rows) based on the overall transcriptional 
profile placed early NPCs near the VZ and maturing ones in the SVZ and 
cortical plate (CP) regions. In situ images were generated by the Allen 
Institute for Brain Science23. The bottom row of images shows the 
anatomical placement of the Dlx-expressing NPCs and in situ images for the 
associated genes. GE, ganglionic eminence. 
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SVZ region and thought to distinguish basal progenitors21,24. 
The Eomes signature marks cells with intermediate levels of genes 
associated with neuronal maturation, as well as a subset of early 
NPCs undergoing DNA replication, probably representing neu-
ronally committed NPCs maturing in the SVZ and dividing basal 
NPCs, respectively. These dividing cells expressed Notch signal-
ing genes (Dll1, Notch2 and Mfng) concurrently with Eomes and 
therefore were probably nascent basal progenitors21.

Two other aspects cut across the main NPC maturation axis. 
The first is driven by prominent expression of Ndn (Fig. 3a). Ndn, 
initially noted for its high expression in mature neurons25, also 
has been shown to be expressed in the VZ26 and to restrict both 
proliferation and apoptosis rates in NPCs26,27. Using PAGODA in 
combination with RNAscope analyses (Supplementary Fig. 3), we 
found that Ndn was expressed in a subset of NPCs, approximately a 
quarter of which exhibited pronounced mitotic signatures and prob-
ably represented cells localized in the SVZ. The second cross-cutting 
aspect is coordinated expression of Dlx homeodomain transcrip-
tion factors. Dlx genes mark tangentially migrating NPCs, which 
originate in the ganglionic eminence and migrate to the cortical 
areas, giving rise to GABAergic neurons28,29. Dlx-positive cells 
express other markers of tangentially migrating NPCs, most notably 
Sp9 and Sp8 transcription factors30. Indeed, spatial localization of 
these cells was predicted to be in the region of the ganglionic emi-
nence, where tangentially migrating NPCs are expected to originate  
(Fig. 3b). In agreement with earlier observations of such NPCs 
undergoing mitosis in the cortical VZ and SVZ, two of ten  
Dlx-positive NPCs were captured in S-phase, and one in M-phase.

To illustrate the methodological advantage of PAGODA, we  
re-examined our NPC data using alternative analysis methods, 
including PCA, independent-component analysis, t-SNE7,12, GP-
LVM11 and BackSPIN5 (Supplementary Figs. 4 and 5). Although 
none of the methods recovered all of the identified subpopulations, 
BackSPIN provided the most compelling results, capturing hetero-
geneity involving expression of Dlx and Prdx4 or Mest. However, the 
reported clustering grouped only some of the cells associated with 
each signature, illustrating the limitations of partitioning-based 
interpretation in a complex biological context.

Just like whole organisms, individual cells can be classi-
fied according to a variety of meaningful criteria. For example,  
tangentially migrating NPCs, despite being a distinct progenitor 
subtype, go through the same neuronal maturation process as 
other NPCs. By identifying significantly overdispersed gene sets, 
PAGODA is able to effectively recover such complex heterogeneity 
structures. The potential ambiguity of classification illustrated by 
the NPCs is likely to be present in many biological contexts. In such 
cases, a single partition or clustering of cells is unlikely to be fully 
informative, and the analysis can benefit from concurrent inter-
pretation. The gene set–based approach and interactive interface 
implemented by PAGODA aim to identify significant transcrip-
tional features distinguishing cells in a population and facilitate 
their interpretation.

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. The scRNA-seq data and gene-count matrix for 
the NPCs are available in the Gene Expression Omnibus (GEO) 
under accession number GSE76005.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Isolation and single-cell RNA-seq of mouse NPCs and astro-
cytes. Single NPCs were isolated from C57BL/6J E13.5 mouse 
cortices for RNA-seq. Timed-pregnant mice were killed by deep 
anesthesia followed by cervical dislocation. The embryos were 
quickly removed, after which cortical hemispheres were isolated, 
ganglionic eminences were removed and all pups’ brains were 
pooled. All animal protocols were approved by the Institutional 
Animal Care and Use Committee at The Scripps Research Institute 
(La Jolla, California, USA) and conformed to the US National 
Institutes of Health guidelines.

Single cells were isolated by gentle trituration in ice-cold phos-
phate-buffered saline containing 2 mM EGTA using P1000 tips 
with decreasing bore diameter. Cells were then filtered through 
a 40-µm nylon cell strainer and stained with propidium iodide 
(PI), a live-dead stain, after which fluorescence-activated single-
cell sorting was performed to select for PI-negative cells. Samples 
remained on ice throughout the process, and the total processing 
time from cervical dislocation to sorting was limited to 2 h. Single 
cells were sorted directly into the cell lysis buffer provided in the 
Clontech SMARTer Ultra Low RNA kit for Illumina sequencing 
(catalog no. 634936), and sequencing libraries were generated 
using the manufacturer’s protocol. The resulting libraries were 
sequenced on the Illumina HiSeq 2000 sequencing platform.

Gene validation using in situ hybridization with RNAscope. 
Mouse E13.5 embryos were removed from timed-pregnant mice 
and prepared according to the RNAscope instructions for paraffin-
embedded tissue. RNAscope probes (Advanced Cell Diagnostics) 
were designed by the manufacturer (catalog nos. GINS2 435891 
and RPA1 435911), and sections were processed using the 
RNAscope 2.0 High Definition Reagent Kit—BROWN (catalog 
no. 310035) according to the manufacturer’s instructions. Sections 
were imaged on a Zeiss Axioimager at 20× magnification.

Previously published scRNA-seq data. For the mixture of cul-
tured human NPCs and primary cortical samples used by Pollen  
et al.20, we downloaded SRA files for each study from the Sequence 
Read Archive (http://www.ncbi.nlm.nih.gov/sra) and converted 
them to FASTQ format using the SRA toolkit (v2.3.5). We aligned 
FASTQ files to the human reference genome (hg19) using Tophat 
(v2.0.10) with Bowtie2 (v2.1.0) and Samtools (v0.1.19). We quan-
tified gene expression counts using HTSeq (v0.5.4). We down-
loaded read counts for the TH2 data published by Buettner et al.6 
from their supplementary site (http://github.com/PMBio/scLVM/
blob/master/data/Tcell/data_Tcells.Rdata). Read (or UMI) count 
matrices for other two data sets were downloaded from GEO 
(GSE60361 for Zeisel et al.5 and GSE59739 for Usoskin et al.4).

Fitting single-cell error models. Following the approach 
described by Kharchenko et al.19, the read count for a gene g in a 
cell i (cgi ) was modeled as a mixture of a negative binomial (NB) 
(signal) and Poisson (drop-out) components:

c p e p e e eg
i

i
d

g bg i
d

g i g i g~ ( ) ( ) , ( )Poisson NBl a q( )+ −( ) ( )1 ,

where p ei
d

g( ) is the probability of encountering a drop-out event in 
a cell i for a gene with a population-wide expected expression mag-
nitude eg (fragments per kilobase of transcript per million mapped 

reads); lbg =0 1.  is the low-level signal rate for the dropped-out 
observations; θi(eg) is the NB size parameter (the functional form is 
described below); and αi is the library size of cell i, as inferred from 
the fitting procedure. The single-cell error models were fit using 
the approach described by Kharchenko et al.19, with the following 
modifications. (1) Instead of estimating the expected expression 
magnitudes of genes using all pairwise comparisons between all 
other cells, we compared each cell to its k most similar cells (on 
the basis of the Pearson linear correlation of genes detected in both 
cells for any pair of cells). The value of k was chosen to approximate 
the complexity of the data set (one-third of the cells for mouse and 
human NPC data sets, and one-fifth for the larger data sets from 
Zeisel et al.5 and Usoskin et al.4). (2) The count dependence on the 
expected expression magnitude was estimated on the linear scale 
with a zero intercept. (3) To improve fit, we modeled the drop-
out probability using logistic regression on both the expression 
magnitude (log scale) and its square value. (4) Instead of fitting a 
constant value for the NB size parameter θ, we fit it as a function of 
the expression magnitude, using the following functional form: 

log( )
( )*

q = + −

+( )−
a

h a
x m s r

1 10 ,

where x is the expression magnitude (log scale) and a, h, m, s and 
r are parameters of the fit. This functional form provides a more 
flexible fit than the q = + −( / )a a x0 1

1 form used in DESeq31 while 
allowing for stable asymptotic behavior.

Evaluating overdispersion of individual genes. For each gene, 
the approach estimates the ratio of observed to expected expres-
sion variance and the statistical significance of the observed 
deviation from the expected value. To illustrate the rationale, we 
will start with a Poisson approximation. Let cg

i  be the number 
of reads observed for a gene g in a cell i. If such reads follow a 
Poisson distribution with mean µg and variance νg (both equal to 
some Poisson rate λg), then Fisher’s index of dispersion

D c vg g
i

g
i

k

g= −( )
=
∑ m

2

1

follows a ck−1
2  distribution32. For the Poisson case vg = µg, for a 

negative binomial process, vg g g= +m m q( ) /2 , where θ is the size 
parameter. As θ decreases from very high values where the NB is 
well approximated by a Poisson distribution, Dg diverges from ck−1

2 . 
Analytical adjustments of Dg based on the NB moments can improve 
the χ2 approximation33. For more accurate approximation, we used 
a numeric correction of the χ2 degrees of freedom, depending on the 
magnitude of θ, so that Dg f∼ c q( )

2  (Supplementary Note 2).
To account for the possibility of drop-out events, we used 

weighted sample variance estimates, so that

D w c eg g
i

g
i

g
i

g
i

g
i

i g
i

kg= −( )





+ ∑ m m m q c
2 2 2/ ( ) / ( ) ~ ,

where wg
i  is the probability that the measurement in a cell i was not 

a drop-out event on the basis of the error model for cell i, and 

k w f eg g
i

i g
i

k
= ( )

=
∑ q ( )
1
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is the effective degrees of freedom for the gene g. m ag
i

g ie= , where 
eg is the expected expression magnitude of a gene g across the 
measured cells.

Because NB (or mixed NB-Poisson) models do not fully capture 
the variability trends observed in the real scRNA-seq measure-
ments, Dg estimates for the real data can systematically deviate 
from 1. To adjust for this noncentrality, we normalized Dg by 
its transcriptome-wide expectation value Dg

e , where Dg
e  models 

the transcriptome-wide dependence of Dg on gene expression 
magnitude. We obtained estimates of Dg

e  using a general additive 
model (fit using the mgcv R package) as a smooth function of 
gene expression magnitude eg. To improve smoothness, we fit the 
general additive model on the corresponding squared coefficient 
of residual variance ( / )D eg g

2. This fit was performed on all of 
the genes. The P value of overdispersion for a gene g was then 
calculated as P F k D Dg

kg
g g g

eod = c2 ( / ), where F
kc2 is the cumulative 

distribution function of the χ2 distribution with k degrees  
of freedom.

To improve the stability of the estimates with respect to outliers, we 
applied a Winsorization procedure34 to the read count matrix before 
the variance evaluation described above. To ensure that the outliers 
were trimmed independently of the total cell coverage, we applied 
the Winsorization procedure to the FPM matrix (i.e., normalizing 
counts by the library size; FPM, fragments per million) and then 
translated the resulting values back into the integer counts. We used 
a trim value of 3 for all data sets (i.e., observations from the three 
highest and three lowest cells for each gene were Winsorized).

Weighted PCA and significance of pathway overdispersion. For 
PCA, we transformed the data to better approximate the standard 
normal distribution. Specifically, we carried out PCA on a matrix 
of log-transformed read counts with a pseudocount of 1, normal-
ized by the library size: x cg

i
g
i

i= +log( / )a 1 . We then scaled the 
values for each gene (matrix row) so that the weighted variance 
of a given gene matched the tail probabilities of the distribution 
for a standard normal process:

y x Q P xg
i

g
i

g g g= N
od

w( )/var ( ),

where QN is the quantile function of the standard normal distribution 
and var ( )w g gx  is the weighted variance of values xg. As in our previous  
work19, the weight used for the clustering and PCA steps included 
an additional damping coefficient k = 0.9, w k p e p cg

i
i
d

g
bg

g
i= −1 * ( ) ( ) ,  

which improved the stability of the subsequent cell clustering for 
noisy data sets (p cbg

g
i( ) is the probability of observing cg

i  counts in 
a drop-out event, evaluated from the Poisson distribution).

We performed weighted PCA for each gene set as described 
by Bailey35, recording first (and optionally subsequent) PCs, 
the magnitude of the eigenvalue (λ1) and associated cell scores 
for each gene set. Statistical significance of the λ1 eigenvalues 
obtained for each gene set (overdispersion P value for a set s, Ps

od)  
was evaluated on the basis of the Tracy-Widom F1 distribution36 
F m n1( , )e , where m is the number of genes in a given set s and ne is 
the effective number of cells, determined to fit the distribution of 
the randomly sampled gene sets (containing the same number of 
genes as the actual gene sets). The presented results were obtained 
with pathways annotated by GO, restricting evaluation to the GO 
terms that had between 10 and 1,000 annotated genes.

Identification and statistical treatment of de novo gene clusters. 
As some aspects of transcriptional heterogeneity can be driven by 
genes that are poorly represented or not described by the anno-
tated pathways, PAGODA incorporates into the overall analysis 
de novo gene sets that group genes showing correlated patterns of 
expression across the cells measured in a particular data set. By 
default, PAGODA implements a straightforward clustering proce-
dure: hierarchical clustering is performed using the Ward method 
(as implemented by the hclust package in R) using a Pearson cor-
relation distance on the normalized expression matrix (that is 
used for the weighted PCA step described above). The resulting 
dendrogram is cut to obtain a predefined number of de novo gene 
clusters (the results shown here include 150 clusters). As there 
are many alternative methods for clustering coexpressed genes, 
PAGODA implementation provides parameters for using alterna-
tive clustering procedures.

As de novo gene clusters are purposefully selected to contain 
genes with correlated expression profiles, the amount of variance 
explained by the first PC (magnitude of λ1) will be greater than 
that expected from random matrices and cannot be modeled by the 
same Tracy-Widom F1 distribution used for the previously anno-
tated gene set. To evaluate the statistical significance of overdisper-
sion, we generated a background distribution of λ1 by performing 
the same hierarchical clustering and weighted PCA procedure on 
randomized matrices (where cell order was randomized for each 
gene independently with 100 randomizations). The λ1 values were 
normalized relative to the Tracy-Widom F1 expectation as 

l l l1 1 1 1
s a bn v= − +( )( ) /TW TW ,

where l1
TW  and v1

TW are the mean and variance of λ1 predicted 
by the Tracy-Widom F1 distribution, and coefficients a and b are 
determined by the linear model l l1 1~ TW +n. This standardized 
residual l1

s was modeled using Gumbel extreme-value distribu-
tion, the parameters of which were fit using the extRemes pack-
age in R. The overdispersion P value for each de novo gene set 
was determined from the tails of that distribution. In the subse-
quent procedures, de novo gene sets and annotated gene sets were 
treated in the same way.

Clustering of redundant heterogeneity patterns. To compile a 
nonredundant set of aspects, the PC cell scores (projections on the 
eigenvector) from each significantly overdispersed (5% false dis-
covery rate, as estimated via the Benjamini-Hochberg method37) 
gene set were normalized so that the magnitude of their variance 
corresponded to the tail probability of the χ2 distribution:

var( ) /( )s Q P ni
n

i= ( ) −
−c 1
2 1od , 

where Q
nc2  is the quantile function of the χ2 distribution with n 

degrees of freedom (n is the number of cells in the data set). The 
redundant aspects of heterogeneity were reduced in two steps. 
First, we grouped aspects reflecting transcriptional variation of 
the same genes by evaluating the similarity of the corresponding 
gene loading scores in combination with the pattern similarity 
using the following distance measure between gene sets i and j:  

d l l s sij i j i j= −
 )1 cor cor( , ) * ( , ) , 

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



doi:10.1038/nmeth.3734 nature methods

where cor is the Pearson linear correlation, li,lj are the loading 
scores of genes found in sets i and j, and si,sj are the correspond-
ing PC cell scores (dij was set to 1 if there were fewer than two 
genes in common between gene sets i and j). We then used the 
distance dij to cluster the aspects, using hierarchical clustering 
with complete linkage. Clusters separated by a distance less than 
0.1 were grouped. The cell scores of the grouped aspects were 
determined as cell scores of the first PC of all aspects in a grouped 
cluster. The second step, aimed at grouping aspects showing simi-
lar patterns of cell separation, involved another round of hierar-
chical clustering using the cor(si,si) distance measure with the 
Ward clustering procedure. The similarity threshold for the final 
grouping of similar aspects varied between data sets depending 
on their complexity (0.5 for the human NPC data, 0.95 for the 
mouse cortical-hippocampal data set, and 0.9 for the T cell and 
mouse NPC data).

Batch correction. To control for the effect of categorical cov-
ariates, such as the presence of multiple batches in the data, 
the approach contrasted whole-population and batch-specific 
variance estimates. Specifically, for each gene g, a batch-specific  
average expression magnitude was estimated for each batch  
b: eg,b. These batch-specific expression estimates were then used 
to obtain batch-adjusted values of Dg, wg

i  and kg (Dg b, , wg b
i
,   

and kg b, , respectively). To identify genes showing batch-specific 
variation, we evaluated the ratio of batch-specific to batch-adjusted 
variance as a g g b gD D= , / . The residual variance of genes showing 
discrepant batch- and population-specific variance was taken as 
D D Dg
b

g g g b g
e= min( , / ) * /,a a1  and P F k D Dg

kg
g g

b
g
eod = c2 ( / ).

The procedure described above ensures that batch-specific 
effects are not reflected in the magnitude of the adjusted variance. 
Batch effects also need to be controlled at the level of expression 
values on which weighted PCA is performed, as batch-specific 
expression patterns across a sufficiently large set of genes can 
still account for a sufficiently high amount of total variance to 
be picked by the PCA. The expression values, x cg

i
g
i

i= +log( / )a 1 ,  
were adjusted in two steps, separating drop-out (0 read count) 
observations from the rest. To adjust for disparity in the frequency 
of the drop-out observations between batches, we determined the 
lower bound of the zero-count observation fraction (u) for each 
batch (assuming a binomial process) and multiplied the weights 
wg
i  for each batch by min(1,max(u)/zb), where max(u) is the 

maximum lower bound value among batches and zb is the frac-
tion of zero-count observations in a given batch. This procedure 
ensured that the expected number of zero-count observations 
was equal among all of the batches. The second step adjusted 
the log expression magnitudes of nonzero observations so that 
the weighted means in each were equal to the population-wide 
weighted mean. To further control for batch-specific effects, we 
performed weighted PCA using batch-specific centering (i.e., set-
ting the weighted mean of each batch to 0).

Spatial placement of cell subpopulations. To spatially place 
neuronal subpopulations identified by PAGODA, we used sig-
nificantly differentially expressed genes (absolute corrected 
Z-score > 1.96) as relative gene expression signatures for each 
subpopulation of interest compared to all other NPCs. In situ 
hybridization (ISH) data for the developing E13.5 mouse were 

downloaded from the Allen Developing Mouse Brain Atlas 
(http://developingmouse.brain-map.org) for all available genes 
(n = 2,194). ISH data were quantified as gene expression ‘energies’, 
defined as expression intensity times expression density, at a grid 
voxel level. Each voxel corresponded to a 100-µm gridding of the 
original ISH stain images and to voxel-level structure annota-
tions according to the accompanying developmental reference 
atlas ontology. The 3D reference model for the developing E13.5 
mouse derived from Feulgen–HP yellow DNA staining was also 
downloaded from the Allen Developing Mouse Brain Atlas for 
use as a higher resolution reference image. Energies for genes in 
each subpopulation’s gene expression signature with correspond-
ing ISH data available were weighted by expression fold change 
on a log2 scale and summed to constitute a composite overlay of 
gene expression. We removed background signal and expression 
detection in regions not annotated as part of the mouse embryo 
in the reference model by applying a minimum gene energy-level 
threshold of 8 units. We focused on spatial placements in the 
developing mouse forebrain and thus restricted gene energies to 
voxels annotated as “forebrain” or “ventricles, forebrain” in the 
reference atlas ontology.

In contrast to more complex in situ landmark-association meth-
ods, such as those presented by Satija et al.38 and Achim et al.39, 
the current method is focused on the relative placement of mutu-
ally exclusive subpopulations. Because of this, the user is able to 
take advantage of both upregulated and downregulated gene sets 
in assigning the most likely spatial distribution of each identi-
fied subpopulation. For example, genes upregulated in maturing 
NPCs relative to early NPCs can be used as indicators of where 
the maturing NPC subpopulation is spatially localized. In addi-
tion, genes downregulated in maturing NPCs relative to early 
NPCs can be used as indicators of where maturing NPCs may 
be absent. Additionally, unlike Satija et al.38, we did not binarize 
the in situ data, because we were particularly interested in gra-
dients of expression across voxels or bins in our particular case. 
Likewise, because of the resolution limitations of our in situ data, 
where each voxel is much bigger than one cell, we were unable 
to precisely map individual cells to single locations as in Achim 
et al.’s method39.

Implementation and data availability. The PAGODA functions 
are implemented in version 1.99 of the scde R package, available at 
http://pklab.med.harvard.edu/scde/, and BioConductor. The source 
code is available on GitHub (https://github.com/hms-dbmi/scde). 
The spatial mapping of neural cells based on the data generated 
by the Allen Institute for Brain Science has been implemented 
as a separate R package, called brainmapr, and is available from 
GitHub (https://github.com/hms-dbmi/brainmapr).
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