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INTRODUCTION: The copy number and in-
tracellular localization of RNA are important
regulators of gene expression. Measurement
of these properties at the transcriptome scale
in single cells will give answers to many ques-
tions related to gene expression and regulation.
Single-molecule RNA imaging approaches, such
as single-molecule fluorescence in situ hybrid-
ization (smFISH), are powerful tools for count-
ing andmapping RNA; however, the number
of RNA species that can be simultaneously im-
aged in individual cells has been limited. This
makes it challenging to perform transcriptomic
analysis of single cells in a spatially resolved
manner. Here, we report multiplexed error-
robust FISH (MERFISH), a single-molecule im-
aging method that allows thousands of RNA

species to be imaged in single cells by using
combinatorial FISH labeling with encoding
schemes capable of detecting and/or correct-
ing errors.

RATIONALE: We labeled each cellular RNA
with a set of encoding probes, which contain
targeting sequences that bind the RNA and
readout sequences that bind fluorescently la-
beled readout probes. Each RNA species is
encodedwith a particular combination of read-
out sequences. We used successive rounds of
hybridization and imaging, each with a differ-
ent readout probe, to identify the readout se-
quences bound to each RNA and to decode the
RNA. In principle, combinatorial labeling al-
lows the number of detectable RNA species to

growexponentiallywith thenumber of imaging
rounds, but the detection errors also increase
exponentially. To combat such accumulating
errors, we exploited error-robust encoding
schemes used in digital electronics, such as
the extended Hamming code, in the design of

our encoding probes but
modified these schemes
in order to account for the
error properties in FISH
measurements.Weassigned
each RNA a binary word
in ourmodifiedHamming

code and encoded the RNA with a combina-
tion of readout sequences according to this
binary word.

RESULTS:We first imaged 140 RNA species
in human fibroblast cells using MERFISH
with 16 rounds of hybridization and a mod-
ified Hamming code capable of both error
detection and correction. We obtained ~80%
detection efficiency and observed excellent
correlation of RNA copy numbers determined
with MERFISH with both bulk RNA sequenc-
ing data and conventional smFISH measure-
ments of individual genes.
Next, we used an alternative MERFISH en-

coding scheme, which is capable of detecting
but not correcting errors, to image 1001 RNA
species in individual cells using only 14 rounds
of hybridization. The observed RNA copy num-
bers again correlate well with bulk sequencing
data. However, the detection efficiency is only
one-third that of the error-correcting encod-
ing scheme.
We performed correlation analysis of the 104

to 106 pairs of measured genes and identified
many covarying gene groups that share com-
mon regulatory elements. Such grouping allowed
us to hypothesize potential functions of ~100
unannotated or partially annotated genes of
unknown functions. We further analyzed cor-
relations in the spatial distributions of different
RNA species and identified groups of RNAs
with different distribution patterns in the cell.

DISCUSSION: This highly multiplexed imag-
ing approach enables analyses based on the
variation and correlation of copy numbers and
spatial distributions of a large number of RNA
specieswithin single cells. Such analyses should
facilitate the delineation of regulatory networks
and in situ identification of cell types. We en-
vision that this approach will allow spatially
resolved transcriptomes to be determined for
single cells.▪
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MERFISH for transcriptome imaging. Numerous RNA species can be identified, counted, and
localized in a single cell by using MERFISH, a single-molecule imaging approach that uses combi-
natorial labeling and sequential imaging with encoding schemes capable of detection and/or
correction of errors. This highly multiplexed measurement of individual RNAs can be used to
compute the gene expression profile and noise, covariation in expression among different genes,
and spatial distribution of RNAs within single cells.
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Knowledge of the expression profile and spatial landscape of the transcriptome in
individual cells is essential for understanding the rich repertoire of cellular behaviors.
Here, we report multiplexed error-robust fluorescence in situ hybridization (MERFISH), a
single-molecule imaging approach that allows the copy numbers and spatial localizations
of thousands of RNA species to be determined in single cells. Using error-robust encoding
schemes to combat single-molecule labeling and detection errors, we demonstrated the
imaging of 100 to 1000 distinct RNA species in hundreds of individual cells. Correlation
analysis of the ~104 to 106 pairs of genes allowed us to constrain gene regulatory
networks, predict novel functions for many unannotated genes, and identify distinct spatial
distribution patterns of RNAs that correlate with properties of the encoded proteins.

S
ystem-wide analyses of the abundance and
spatial organization of RNAs in single cells
promise to transform our understanding
in many areas of cell and developmental
biology, such as the mechanisms of gene

regulation, the heterogeneous behavior of cells,
and the development and maintenance of cell
fate (1). Single-molecule fluorescence in situ hy-
bridization (smFISH) has emerged as a powerful
tool for studying the copy number and spatial
organization of RNAs in single cells either in
isolation or in their native tissue context (2, 3).
Taking advantage of its ability to map the spatial
distributions of specific RNAs with high resolu-
tion, smFISH has revealed the importance of sub-
cellular RNA localization in diverse processes such
as cell migration, development, and polarization
(4–8). In parallel, the ability of smFISH to pre-
ciselymeasure the copy numbers of specific RNAs
without amplification bias has allowed quantita-
tive measurement of the natural fluctuations in
gene expression, which has in turn elucidated the
regulatory mechanisms that shape such fluctua-
tions and their role in a variety of biological pro-
cesses (9–13).
Recent advances in imaging and analysismeth-

ods have allowed hundreds of smFISH measure-
ments to be performed in an automatedmanner,
substantially expanding our knowledge of the
RNA expression profile and spatial organization
in different organisms (14, 15). However, applica-
tion of the smFISH approach to many systems-
level questions remains limited by the number of
RNA species that can be simultaneously mea-
sured in single cells. State-of-the-art efforts by

using combinatorial labeling with either color-
based barcodes or sequential hybridization have
enabled simultaneous measurements of 10 to 30
different RNA species in individual cells (16–19),
yet many interesting biological questions would
benefit from the measurement of hundreds to
thousands of RNAs within a single cell. For ex-
ample, analysis of how the expression profile of
such a large number of RNAs vary from cell to
cell and how these variations correlate among
different genes could be used to systematically
identify coregulated genes and map regulatory
networks, knowledge of the subcellular organi-
zations of numerous RNAs and their correlations
couldhelp elucidatemolecularmechanismsunder-
lying the establishment andmaintenance ofmany
local cellular structures, and RNA profiling of in-
dividual cells in native tissues could allow in situ
identification of cell type.
Here, we report multiplexed error-robust FISH

(MERFISH), a highly multiplexed smFISH imag-
ingmethod that substantially increases the num-
ber of RNA species that can be simultaneously
imaged in single cells by using combinatorial la-
beling and sequential imaging with error-robust
encoding schemes. We demonstrated this tran-
scriptome imaging approach by simultaneously
measuring 140 RNA species with an encoding
scheme that can both detect and correct errors
and 1001 RNA species with an encoding scheme
that can detect but not correct errors. Correlation
analyses of the copy number variations and spa-
tial distributions of these genes allowed us to
identify groups of genes that are coregulated and
groups of genes that share similar spatial distribu-
tion patterns inside the cell.

Combinatorial labeling with
error-robust encoding schemes

Combinatorial labeling that identifies each RNA
species by multiple (N) distinct signals offers a

route to rapidly increase the number of RNA spe-
cies that can be probed simultaneously in indi-
vidual cells (Fig. 1A). However, this approach to
scaling up the throughput of smFISH to the sys-
tems scale faces a substantial challenge because
not only does the number of addressable RNA
species increases exponentially with N, but the
detection error rates also grow exponentially with
N (Fig. 1, B to D). Imagine a conceptually simple
scheme to implement combinatorial labeling, in
which each RNA species is encoded with a N-bit
binary word, and the sample is probed with N
corresponding rounds of hybridization, each round
targeting only the subset of RNAs that should
read “1” in the corresponding bit (fig. S1). N
rounds of hybridization would allow 2N – 1 RNA
species to be probed. With just 16 hybridizations,
more than 64,000 RNA species—which should
cover the entire human transcriptome, including
both messenger RNAs (mRNAs) and noncoding
RNAs (20)—could be identified (Fig. 1B, black sym-
bols). However, asN increases, the fraction of RNAs
properly detected (the calling rate) would rapidly
decrease and, more troublingly, the fraction of
RNAs that are identified as incorrect species (the
misidentification rate) would rapidly increase (Fig.
1, C and D, black symbols). With realistic error
rates per hybridization (measured below), the ma-
jority of RNA molecules would be misidentified
after 16 rounds of hybridizations.
To address this challenge, we designed error-

robust encoding schemes in which only a sub-
set of the 2N – 1 words separated by a certain
Hammingdistance (21)wereused to encodeRNAs.
In a codebook in which the minimumHamming
distance is 4 (HD4 code), at least four bits must
be read incorrectly to change one valid code word
into another (fig. S2A). As a result, every single-bit
error produces a word that is exclusively close to
a single RNA-encoding word, allowing such er-
rors to be detected and corrected (fig. S2B).
Double-bit errors produce words with an equal
Hamming distance of 2 frommultiple valid code
words and, thus, can be detected but not corrected
(fig. S2C). Such a code should substantially increase
the calling rate and reduce the misidentification
rate (Fig. 1, C and D, blue symbols). To further
account for the fact that it is more likely to miss a
hybridization event (an 1→0 error) than to mis-
identify a background spot as an RNA (an 0→1
error) in smFISH measurements, we designed a
modified HD4 (MHD4) code, in which the num-
ber of 1 bits were kept both constant and rela-
tively low—only four per word in this work—so
as to reduce error and avoid biased detection. This
MHD4 code should further increase the calling
rate and reduce the misidentification rate (Fig. 1,
C and D, purple symbols).
In addition to the error considerations, several

practical challenges have also made it difficult to
probe a large number of RNA species, such as the
high cost of themassive number of distinct FISH
probes needed and the long time required to com-
plete many rounds of hybridization. An oligopaint
approachhas beenpreviously developed to generate
a large number of oligonucleotide probes to label
chromosomeDNA and to introduce nontargeting
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sites for secondary activities (22). Inspired by
this approach, we designed a two-step labeling
scheme to encode and read out cellular RNAs
(Fig. 1E). First, we label cellular RNAs with a set
of encoding probes, each probe comprising a

RNA targeting sequence and two flanking readout
sequences. Four of the N distinct readout se-
quences were assigned to each RNA species based
on the N-bit MHD4 code word of the RNA.
Second, we identified these N readout sequences

with complementary FISH probes (the readout
probes) via N rounds of hybridization and imag-
ing, each round using a different readout probe.
To increase the signal-to-background ratio, we
labeled every cellular RNA with ~192 encoding
probes. Because each encoding probe contained
two of the four readout sequences associated with
that RNA (Fig. 1E), a maximum of ~96 readout
probes can bind to each cellular RNA per hybrid-
ization round. To generate the massive number of
encoding probes required, we amplified them
fromarray-derivedoligonucleotide pools contain-
ing tens of thousands of custom sequences using
a modified form of the oligopaint protocol com-
prising in vitro transcription followed by reverse
transcription (fig. S3 and supplementary mate-
rials, materials and methods, “Probe Synthesis”)
(22, 23). This two-step labeling approach dra-
matically diminished the total hybridization time
for an experiment; we found that efficient hybrid-
ization to the readout sequences took only 15 min,
whereas efficient direct hybridization to cellular
RNA required more than 10 hours.

Measuring 140 genes with MERFISH
by use of a 16-bit MHD4 code

To test the feasibility of this error-robust, multi-
plexed imaging approach,we performed a 140-gene
measurement on human fibroblast cells (IMR90)
using a 16-bit MHD4 code to encode 130 RNA
species while leaving 10 code words as misiden-
tification controls (table S1). After each round of
hybridization with the fluorescent readout probes,
cells were imaged bymeans of conventional wide-
field imaging with an oblique-incidence illumina-
tion geometry. Fluorescent spots corresponding
to individual RNAswere clearly detected andwere
then efficiently extinguished via a brief photo-
bleaching step (Fig. 2A). The sample was stable
throughout the 16 rounds of iterative labeling
and imaging: The change in the number of fluo-
rescent spots from round to round matched the
expected change predicted on the basis of the rel-
ative abundances of RNA species targeted in each
round derived from bulk sequencing, and we did
not observe a systematic decreasing trend with
increasing number of hybridization rounds (fig.
S4A). The average brightness of the spots varied
from round to roundwith a standard deviation of
40%, which is likely due to different binding ef-
ficiencies of the readout probes to the different
readout sequences on the encoding probes (fig.
S4B).We observed only a small, systematic decreas-
ing trend in the spot brightness with increasing
hybridization rounds, which was on average 4%
per round (fig. S4B).
We then constructed binary words from the

observed fluorescent spots based on their on-off
patterns across the 16 hybridization rounds (Fig.
2, B to D). If the word exactly matched one of the
140MHD4 codewords (exactmatches) or differed
by only one bit (error-correctable matches), we
assigned it to the corresponding RNA species
(Fig. 2D).Within the single cell depicted in Fig. 2,
A and B, more than 1500 RNA molecules corre-
sponding to 87% of the 130 encoded RNA spe-
cies were detected after error correction (Fig. 2E).
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Fig. 1. MERFISH: A highly multiplexed smFISH approach enabled by combinatorial labeling and
error-robust encoding. (A) Schematic depiction of the identification of multiple RNA species inN rounds
of imaging. Each RNA species is encoded with aN-bit binary word, and during each round of imaging, only
the subset of RNAs that should read 1 in the corresponding bit emit signal. (B to D) The number of
addressable RNA species (B); the rate at which these RNAs are properly identified—the “calling rate” (C);
and the rate at which RNAs are incorrectly identified as a different RNA species—the “misidentification
rate” (D); plotted as a function of the number of bits (N) in the binarywords encoding RNA.Black indicates
a simple binary code that includes all 2N-1 possible binary words. Blue indicates the HD4 code in which the
Hamming distance separating words is 4. Purple indicates a modified HD4 (MHD4) code where the
number of 1 bits are kept at four. The calling and misidentification rates are calculated with per-bit error
rates of 10% for the 1→0 error and 4% for the 0→1 error. (E) Schematic diagramof the implementation of a
MHD4 code for RNA identification. Each RNA species is first labeled with ~192 encoding probes that
convert the RNA into a specific combination of readout sequences (Encoding hyb).These encoding probes
each contain a central RNA-targeting region flanked by two readout sequences, drawn from a pool of N
different sequences, each associated with a specific hybridization round. Encoding probes for a specific
RNA species contain a particular combination of four of theN readout sequences,which correspond to the
four hybridization rounds in which this RNA should read 1. N subsequent rounds of hybridization with the
fluorescent readout probes are used to probe the readout sequences (hyb 1, hyb 2,…, hyb N).The bound
probes are inactivated by photobleaching between successive rounds of hybridization. For clarity, only one
possible pairing of the readout sequences is depicted for the encoding probes; however, all possible pairs
of the four readout sequences are used at the same frequency and distributed randomly along each
cellular RNA in the actual experiments.
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Similar observations were made in ~400 cells
from seven independent experiments. On aver-
age, ~4 times as many RNA molecules and ~2
times as many RNA species were detected per
cell after error correction as compared with the
values obtained before error correction (fig. S5).
Two types of errors can occur in the copy

number measurement of each RNA species: (i)
Some molecules of this RNA species are not de-
tected, leading to a drop in calling rate, and (ii)
somemolecules from other RNA species aremis-
identified as this RNA species. To assess the extent
of misidentification, we used the 10 misidentifi-
cation control words—code words that were not
associatedwithany cellularRNA.Althoughmatches
to these controlwordswere observed, they occurred
far less frequently thandid the real RNA-encoding
words: 95% of the 130 RNA-encoding words were
counted more frequently than the median count
for these control words. Moreover, we typically
found the ratio of the number of exact matches
to the number of matches with one-bit errors for
a real RNA-encoding word to be substantially
higher than the same ratios observed for the mis-
identification controls, as expected (fig. S6, A and
B). Using this ratio as ameasure of the confidence
in RNA identification, we found that 91% of the
130 RNA species had a confidence ratio greater
than themaximum confidence ratio observed for
the misidentification controls (Fig. 2F), demon-
strating a high accuracy of RNA identification.
Subsequent analyses were conducted only on
these 91% of genes.
To estimate the calling rate, we used the error-

correction ability of theMHD4 code to determine
the 1→0 error rates (10% on average) and 0→1
error rates (4% on average) for each hybridiza-
tion round (fig. S6, C and D). Using these error
rates, we estimated an ~80% calling rate for in-
dividual RNA species after error correction—
~80% of the fluorescent spots corresponding to
a RNA species were decoded correctly (fig. S6E).
Although the remaining 20% of spots contrib-
uted to a loss in detection efficiency, most of them
did not cause species misidentification because
they were decoded as double-bit error words and
discarded.
To test for potential technical bias in our mea-

surements, we probed the same 130 RNAs spe-
cies with a differentMHD4 codebook by shuffling
the code words among different RNA species
(table S1) and changing the encoding probe se-
quences.Measurementswith this alternative code
gave similar misidentification and calling rates
(fig. S7). The copy numbers of individual RNA
species per cell measured with these two code-
books showed excellent agreementwith aPearson
correlation coefficient of 0.94 (Fig. 2G), indicating
that the choice of encoding scheme did not bias
the measured counts.
In order to validate the copy numbers derived

from our MERFISH experiments, we performed
conventional smFISHmeasurements on 15 of the
130 genes, spanning the full measured abun-
dance range of three orders of magnitude. For
each of these genes, both the average copy num-
ber and the copy number distribution across
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Fig. 2. Simultaneous measurement of 140 RNA species in single cells by use of MERFISH with a
16-bit MHD4 code. (A) Images of RNA molecules in an IMR90 cell after each hybridization round (hyb
1 to hyb 16). The images after photobleaching (for example, bleach 1) demonstrate efficient removal of
fluorescent signals between hybridizations. (B) The localizations of all detected singlemolecules in this cell
colored according to their measured binary words. (Inset) The composite, false-colored fluorescent image
of the 16 hybridization rounds for the boxed subregion with numbered circles indicating potential RNA
molecules. A red circle indicates an unidentifiable molecule, the binary word of which does not match any
of the 16-bit MHD4 code words even after error correction. (C) Fluorescent images from each round of
hybridization for the boxed subregion in (B), with circles indicating potential RNA molecules. (D)
Correspondingwords for the spots identified in (C). Red crosses represent the corrected bits. (E) The RNA
copy number for each gene observed without (green) or with (blue) error correction in this cell. (F) The
confidence ratiomeasured for the 130 RNA species (blue) and the 10misidentification control words (red)
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plot of the average copy number of each RNA species per cell measured with two shuffled codebooks of
the MHD4 code. The Pearson correlation coefficient is 0.94 with a P value of 1 × 10−53. The dashed line
corresponds to the y = x line. (H) Scatter plot of the average copy number of each RNA species per cell
versus the abundance determined by bulk sequencing in FPKM. The Pearson correlation coefficient
between the logarithmic abundances of the two measurements was 0.89 with a P value of 3 × 10−39.
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many cells agreed quantitatively between our
MERFISH and conventional smFISH measure-
ments (fig. S8, A and B). The ratio of the copy
numbers determined by these two approaches
was 0.82 T 0.06 (mean T SEM across the 15 mea-
sured RNA species) (fig. S8B), which agrees with
the estimated 80%calling rate for ourmultiplexed
imaging approach. The quantitative match be-
tween this ratio and our estimated calling rate
over the full measured abundance range addi-
tionally supports our assessment that themisiden-
tification error was low. Given that the agreement
between theMERFISHand conventional smFISH
results extended to the genes at the lowest mea-
sured abundance (<1 copy per cell) (fig. S8B), we
estimate that our measurement sensitivity was
better than 1 copy per cell.
As a final validation, we compared the abun-

dance of each RNA species averaged over hun-
dreds of cells to those obtained from a bulk RNA
sequencing measurement that we performed on
the same cell line. Our imaging results correlated
remarkably well with bulk sequencing results,
with a Pearson correlation coefficient of 0.89
(Fig. 2H).

High-throughput analysis of
cell-to-cell variation in gene expression

The MERFISH approach allows parallelization
of measurements of many individual RNA spe-
cies and covariation analysis between different
RNA species. We first illustrated the paralleliza-
tion aspect by examining the cell-to-cell variation
in the expression level of each of the measured
genes (Fig. 3A). To quantify the measured varia-
tion, we computed the Fano factors, defined as
the ratio of the variance to the mean RNA copy
number, for all measured RNA species. The Fano
factors substantially deviated from 1, the value
expected for a simple Poisson process, for many
genes and exhibited an increasing trend with the
meanRNA abundance (Fig. 3B), which is consist-
ent with a previous observation for other cell types
(24). A simplemodel for promoter regulation—the
promoter stochastically switches between on and
off states with global constraints on the kinetic
rates—has been previously suggested to ratio-
nalize such a trend (24, 25). According to thismod-
el, this trend of increasing Fano factors with mean
RNA abundance can be explained by changes
in the transcription rate and/or promoter off-
switching rates but not by changes in the pro-
moter on-switching rate.
Moreover, we identified several RNA species

with substantially larger Fano factors than this
average trend. For example,we found that SLC5A3,
CENPF, MKI67, TNC, and KIAA1199 displayed
Fano factor values substantially higher than those
of the other genes expressed at similar abundance
levels. The high variability of some of these genes
can be explained by their association with the
cell cycle. For example, two of these particularly
“noisy” genes, MKI67 and CENPF, are both an-
notated as cell-cycle related genes (26), and based
on their bimodal expression (Fig. 3C), we propose
that their transcription is strongly regulated by
the cell cycle. Other high-variability genes did not

show the same bimodal expression patterns and
are not known to be associatedwith the cell cycle.
Understanding the origin and implications of
noisy gene expression is an active topic of current
research (24).

Analysis of expression covariation
among different genes

Analysis of covariations in the expression levels
of different genes can reveal which genes are
coregulated and elucidate gene regulatory path-
ways. At the population level, such analysis often
requires the application of external stimuli to drive
gene expression variation; hence, correlated ex-
pression changes can be observed among genes
that share common regulatory elements influ-
enced by the stimuli (27). At the single-cell level,
one can take advantage of the natural stochastic
fluctuations in gene expression for such analysis
and can thus studymultiple regulatory networks
without having to stimulate each of them indi-
vidually. Such covariation analysis can constrain
regulatory networks, suggest new regulatory path-
ways, and predict function for unannotated genes
based on associationswith covarying genes (11, 28).
We applied this approach to the 140-genemea-

surements and examined the ~10,000 pairwise
correlation coefficients that describe how the
expression levels of each pair of genes covaried
from cell to cell. Many of the highly variable genes
showed tightly correlated or anticorrelated varia-
tions (Fig. 3C). To better understand the correla-
tions for all gene pairs, we adopted a hierarchical
clustering approach, commonly used in the analy-
sis of both bulk and single-cell expression data
(29, 30), to organize these genes on the basis of
their correlation coefficients (Fig. 3D). From the
cluster tree structure, we identified seven groups
of genes with substantially correlated expression
patterns (Fig. 3D and table S2). Within each of
the seven groups, every gene showed significant-
ly stronger average correlation with other mem-
bers of the group than with genes outside the
group (table S2). To further validate and under-
stand these groups, we identified gene ontology
(GO) terms (31) enriched in each of these seven
groups. The enrichedGO termswithin each group
shared similar functions and were largely specific
to each group (Fig. 3E and table S2), validating
the notion that the observed covariation in ex-
pression reflects some commonalities in the regu-
lation of these genes.
Here, we describe two of these groups as il-

lustrative examples. The predominant GO terms
associated with group 1 were terms associated
with the extracellular matrix (ECM) (Fig. 3, D and
E, and table S2). Notable members of this group
included ECM components—such as FBN1, FBN2,
COL5A, COL7A, and TNC—and glycoproteins link-
ing the ECM and cell membranes, such as VCAN
and THBS1. The group also included an unanno-
tated gene,KIAA1199, which we would predict to
play a role in ECMmetabolism on the basis of its
association with this cluster. Indeed, this gene
has recently been identified as an enzyme in-
volved in the regulation of hyaluronan, which is
a major sugar component of the ECM (32).

Group 6 contained many genes that encode
vesicle transport proteins and proteins associ-
atedwith cell motility (Fig. 3, D and E, and table
S2). The vesicle transport genes included micro-
tubulemotors and related genesDYNC1H,CKAP1,
and factors associated with vesicle formation and
trafficking, such as DNAJC13 and RAB3B. Again,
we found an unannotated gene, KIAA1462, with-
in this cluster. On the basis of its strong cor-
relation with DYNC1H1 and DNAJC13, we predict
that this gene may be involved in vesicle trans-
port. The cell motility genes in this group included
genes encoding actin-binding proteins such as
AFAP1, SPTAN1, SPTBN1, andMYH10, and genes
involved in the formation of adhesion complexes,
such as FLNA and FLNC. Several guanosine
triphosphatase (GTPase)–associated factors in-
volved in the regulation of cell motility, attach-
ment, and contraction also fell into this group,
including DOCK7, ROCK2, IQGAP1, PRKCA, and
AMOTL1. The observation that some cellmotility
genes correlated with vesicle transport genes is
consistent with the role of vesicle transport in
cell migration (33). An additional feature of group
6 is that a subset of these genes—in particular,
those related to cell motility—were anticorrelated
with members of the ECM group discussed above
(Fig. 3D). This anticorrelation may reflect regu-
latory interactions that mediate the switching of
cells between adherent and migratory states.

Mapping spatial distributions of RNAs

As an imaging-based approach, MERFISH also
allowed us to investigate the spatial distributions
of many RNA species simultaneously. Several pat-
terns emerged from the visual inspection of indi-
vidual genes, with someRNA transcripts enriched
in the perinuclear region, some enriched in the
cell periphery, and some scattered throughout
the cell (Fig. 4A). To identify genes with similar
spatial distributions, we determined the correla-
tion coefficients for the spatial density profiles
of all pairs of RNA species and organized these
RNAs according to the pairwise correlations
again using the hierarchical clustering approach.
The correlation coefficient matrix showed groups
of genes with correlated spatial organizations, and
the two most notable groups with the strongest
correlations are indicated in Fig. 4B. Group I
RNAs appeared enriched in the perinuclear re-
gion, whereas group II RNAs appeared enriched
near the cell periphery (Fig. 4C). Quantitative
analysis of the distances between each RNAmol-
ecule and the cell nucleus or the cell periphery
indeed confirmed this visual impression (Fig. 4D).
Group I contained genes encoding extracel-

lular proteins such as FBN1, FBN2, and THSB1;
secreted proteins such as PAPPA; and integral
membrane proteins such as LRP1 and GPR107.
These proteins have no obvious commonalities
in function. Rather, a GO analysis showed signif-
icant enrichment for location terms, such as extra-
cellular region, basementmembrane, or perivitelline
space (Fig. 4E). To reach these locations, proteins
must pass through the secretion pathway, which
often requires translation of mRNA at the endo-
plasmic reticulum (ER) (34, 35). Thus, we propose
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independent data sets. (C) Z-scores of the expression variations of four ex-
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the pairwise correlation coefficients of the cell-to-cell variation in expression
for the measured genes, shown together with the hierarchical clustering tree.
The seven groups identified by a specific threshold on the cluster tree (dashed

line) are indicated by the black boxes in the matrix and colored lines on the
tree,with gray lines on the tree indicating ungrouped genes. Different threshold
choices on the cluster tree could be made to select either smaller subgroups
with tighter correlations or larger super-groups containing more weakly cou-
pled subgroups.Two of the seven groups are enlarged on the right. (E) Enrich-
ment of 30 selected, statistically significantly enriched GO terms in the seven
groups. Enrichment refers to the ratio of the fraction of genes within a group
that have the specific GO term to the fraction of all measured genes having
that term. Top 10 statistically significantly enriched GO terms for each of the
seven groups are shown in table S2.Not all of theGO terms presented here are
in the top 10 list.

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org on January 04, 2022



that the spatial pattern that we observed for
these mRNAs reflects their cotranslational en-
richment at the ER. The enrichment of these
mRNAs in the perinuclear region (Fig. 4, C and D,
light blue), where the rough ER resides, supports
this conclusion.
Group II contained genes encoding the actin-

binding proteins, including filamins FLNA and
FLNC, talin TLN1, and spectrins SPTAN1 and
SPTBN1; themicrotubule-binding protein CKAP5;
and the motor proteins MYH10 and DYNC1H1.
This group was enriched with GO terms such as
cortical actin cytoskeleton, actin filament bind-
ing, and cell-cell adherens junction (Fig. 4E). It
has been shown previously that b-actin mRNA is
enriched near the cell periphery in fibroblasts, as
are mRNAs that encode members of the actin-
binding Arp2/3 complex (36, 37). The enrichment
of group II mRNAs in the peripheral region of
the cells (Fig. 4, C and D) suggests that the spa-
tial distribution of the group II genes might
be related to the distribution of actin cytoskele-
ton mRNAs.

Measuring 1001 genes with MERFISH
by use of a 14-bit MHD2 code

Last, we sought to further increase the through-
put of our MERFISH measurement by simulta-
neously imaging ~1000RNA species. This increase
could be achieved with our MHD4 code by in-
creasing the number of bits per code word to 32
while maintaining the number of 1 bits per word

at four (Fig. 1B). This could be implemented by
either increasing the number of hybridization
round to 32 or maintaining 16 rounds of hybrid-
ization, but using two-color imaging in each round.
We pursued an alternative approach that did
not require an increase in the number of hybrid-
izations or color channels by relaxing the error
correction requirement but keeping the error-
detection capability. For example, by reducing the
Hamming distance from 4 to 2, we could use all
14-bit words that contain four 1 bits to encode
1001 genes and probe these RNAs with only 14
rounds of hybridization. However, because a sin-
gle error can produce a word equally close to two
different code words, error correction is no longer
possible for this modified Hamming-distance-2
(MHD2) code. Hence, we expect the calling rate
to be lower and the misidentification rate to be
higher with this encoding scheme.
To evaluate the performance of this 14-bit

MHD2 code, we set aside 16 of the 1001 possible
code words as misidentification controls and
used the remaining 985 words to encode cellular
RNAs (table S3). Among these 985 RNAs, we in-
cluded 107 RNA species probed in the 140-gene
experiments as an additional control. We per-
formed the 1001-gene experiments in IMR90 cells
by using a similar procedure as described above.
To allow all encoding probes to be synthesized
from a single 100,000-member oligopool, we re-
duced the number of encoding probes per RNA
species to ~94. Fluorescent spots corresponding

to individual RNA molecules were again clearly
detected in each round of hybridization with the
readout probes, andbased on their on-off patterns,
these spots were decoded into RNA (Fig. 5A and
fig. S9, A and B). In the cell shown in Fig. 5A, 430
RNA species were detected, and similar results
were obtained in ~200 imaged cells in three in-
dependent experiments.
As expected, the misidentification rate of this

scheme was higher than that of the MHD4 code.
Of all real RNA words, 77% were detected more
frequently than the median count for the mis-
identification controls, instead of the 95% value
observed in theMHD4measurements. Using the
same confidence ratio analysis as described above,
we found that 73% (instead of 91% for the MHD4
measurements) of the 985 RNA species were
measured with a confidence ratio larger than
the maximum value observed for the misidenti-
fication controls (fig. S9C). RNA copy numbers
measured from these 73% RNA species showed
excellent correlation with our bulk RNA sequenc-
ing results (Pearson correlation coefficient r =
0.76) (Fig. 5B, black). The remaining 27% of the
genes still exhibit good, albeit lower, correlation
with the bulk RNA sequencing data (r = 0.65)
(Fig. 5B, red), but we took the conservative mea-
sure of excluding them from further analysis.
The lack of an error correction capability also

decreased the calling rate of each RNA species:
When comparing the 107 RNA species common
inboth the 1001-gene and 140-genemeasurements,
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we found that the copy numbers per cell of these
RNA species were lower in the 1001-gene mea-
surements (Fig. 5C and fig. S9D). The total count
of these RNAs per cell was ~1/3 of that observed
in the 140-gene measurements. Thus, the lack
of error correction in the MHD2 code reduced
the calling rate to ~30% of that of the MHD4
code, which is consistent with the decrease in
calling rate observed for the MHD4 code when
error correction was not applied. As expected
from the quantitative agreement between 140-gene
measurements and conventional smFISH results,
comparison of the 1001-gene measurements with
conventional smFISH results for 10 RNA species
also indicated a calling rate that is ~1/3 of that
observed for the MHD4 code (fig. S8C). Despite
the expected reduction in calling rate, the good
correlations found between the copy numbers
observed in the 1001-gene measurements and
those observed in the 140-gene measurements, as
well as in conventional smFISH and bulk RNA
sequencing measurements, indicates that the rel-
ative abundance of these RNAs can be quantified
with the MHD2 encoding scheme.
Simultaneously imaging ~1000 genes in indi-

vidual cells substantially expanded our ability to
detect coregulated genes. The matrix of pairwise
correlation coefficients determined from the cell-
to-cell variations in the expression levels of these
genes is shown in Fig. 6A. Using the same hier-
archical clustering analysis as described above,

we identified ~100 groups of genes with corre-
lated expression (table S4). Nearly all of these
~100 groups showed statistically significant en-
richment of functionally related GO terms (Fig.
6B and table S4). These included some of the
groups identified in the 140-genemeasurements,
such as the group associated with cell-replication
genes and the group associated with cell-motility
genes (Fig. 6, A and B, groups 7 and 102), as well
as many new groups. The groups identified here
included 46 RNA species lacking any previous
GO annotations, for which we can now hypoth-
esize function on the basis of their group asso-
ciation (table S4). For example, KIAA1462 is part
of the cell motility group, as also shown in the
140-gene experiments, suggesting a potential role
of this gene in cell motility (Fig. 6A, group 102).
Likewise, KIAA0355 is part of a new group en-
riched in genes associated with heart develop-
ment (Fig. 6A, group 79), and C17orf70 is part of a
group associatedwith ribosomal RNAprocessing
(Fig. 6A, group 22). Using these groupings, we
can also hypothesize cellular functions for 61
transcription factors and other partially annotated
proteins of unknown functions (table S4). For
example, the transcription factors Z3CH13 and
CHD8 are bothmembers of the cell-motility group,
suggesting their potential role in the transcrip-
tional regulation of cell-motility genes. Although
thesepredicted functionsbasedongene-association
analysis require further validation, our covaria-

tion data provide a resource for generating hy-
potheses on gene function and regulation.

Discussion

We have developed a highly multiplexed detec-
tion scheme for transcriptomic-scale RNA imag-
ing in single cells. Using combinatorial labeling,
sequential hybridization and imaging, and two
different error-robust encoding schemes,we simulta-
neously imaged either 140 or 1001 genes in hun-
dreds of individual human fibroblast cells. Of the
two encoding schemes presented here, theMHD4
code is capable of both error detection and error
correction and hence can provide a higher calling
rate and a lower misidentification rate than can
theMHD2 code, which instead can only detect but
cannot correct errors. MHD2, on the other hand,
provides a faster scaling of the degree of multi-
plexing with the number of bits than canMHD4.
Other error-robust encoding schemes can also be
used for such multiplexed imaging, and experi-
menters can set the balance between detection
accuracy and ease of multiplexing according to
the specific requirements of the experiments.
By increasing the number of bits in the code

words, it should be possible to further increase
the number of detectable RNA species by using
MERFISH with either MHD4 or MHD2 codes.
Because of their much slower increase in error
rates with the number of bits, we expect the error-
correcting encoding schemes, such as MHD4, to
bemore favorable for scalingup themeasurements.
For example, using the MHD4 code with 32 total
bits and four or six 1 bits would increase the num-
ber of addressable RNA species to 1240 or 27,776,
respectively; the latter is the approximate scale of
the human transcriptome. The predicted misiden-
tification and calling rates are still reasonable for
the 32-bit MHD4 code (shown in Fig. 1, C and D,
purple for the MHD4 code with four 1 bits, and
similar rates were calculated for the MHD4 code
with six 1 bits). If more accuratemeasurements are
desired, an additional increase in the number of
bits would allow the use of encoding schemes
with a Hamming distance greater than 4, further
enhancing the error detection and correction ca-
pability. Although an increase in the number of
bits by adding more hybridization rounds would
increase the data collection time and potentially
lead to sample degradation, these problems could
be mitigated by using multiple colors to readout
multiple bits in each round of hybridization.
As the degree of multiplexing is increased, it is

important to consider the potential increase in
the density of RNAs that need to be resolved in
each roundof imaging.On the basis of our imaging
and sequencing results, we estimate that including
the whole transcriptome of the IMR90 cells would
lead to a totalRNAdensity of ~200molecules/mm3.
Using our current imaging and analysis methods,
we could resolve 2 to 3 molecules/mm3 per hy-
bridization round (38), which would reach a
total RNA density of ~20 molecules/mm3 after
32 rounds of hybridization. This density should
allow all but the top 10%most expressed genes to
be imaged simultaneously or a subset of genes
with even higher expression levels to be included.
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By using more advanced image analysis algo-
rithms to better resolve overlapping images of
individual molecules, such as compressed sensing
(39, 40), it would be possible to extend the re-
solvable density by approximately fourfold and
thus allow nearly the entire transcriptome, ex-
cept for the top 2% most expressed genes, to be
imaged all together. Last, theoretical predictions
(17) indicate that the use of superresolution
imaging (41, 42) could increase the resolvable
density to ~105 molecules/mm3, which should be
ample to address the entire transcriptome, even
in cell types with RNA densities substantially
higher than that of IMR90. However, RNAs in
densely packed structures, such as p-bodies and
stress granules, may still elude measurement.
We have illustrated the utility of the data de-

rived from highly multiplexed RNA imaging by
using covariation and correlation analysis to re-
veal distinct subcellular distribution patterns of
RNAs, to constrain gene regulatory networks, and
to predict functions formany previously unanno-
tated or partially annotated geneswith unknown
functions. We anticipate that many more quan-
titative analyses could be applied to such data
sets that include the spatial localization and copy
number information of many RNA species in

individual cells. Given its ability to quantify RNAs
across a wide range of abundances without
amplification bias while preserving native con-
text, we envision that MERFISH will enable
many applications of in situ transcriptomic anal-
yses of individual cells in culture or complex
tissues.

Materials and Methods
Probe design

Each RNA species in our target set was randomly
assigned a binary code word either from all 140
possible code words of the 16-bit MHD4 code or
from all 1001 possible code words of the 14-bit
MHD2 code, as we describe in the main text.
The encoding schemes are provided in tables
S1 and S3.
We used array-synthesized oligopools as tem-

plates to make the encoding probes (22, 23). The
template molecule for each encoding probe con-
tains three components: (i) a central targeting
sequence for in situ hybridization to the target
RNA, (ii) two flanking readout sequences de-
signed to hybridize each of two distinct readout
probes, and (iii) two flanking primer sequences
to allow enzymatic amplification of the probes

(fig. S3). The readout sequences were taken from
the 16 possible readout sequences, each corre-
sponding to one hybridization round. The read-
out sequences were assigned to the encoding
probes so that for any RNA species, each of the
four readout sequences were distributed uni-
formly along the length of the target RNA and
appeared at the same frequency. Template mol-
ecules for the 140-gene library also included a
common 20-nucleotide (nt) priming region be-
tween the first polymerase chain reaction (PCR)
primer and the first readout sequence. This prim-
ing sequence was used for the reverse transcrip-
tion step described below. All template sequences
are provided in table S5.
We embedded multiple experiments in a sin-

gle array-synthesized oligopool and used PCR to
selectively amplify only the oligos required for a
specific experiment. Primer sequences for this
indexed PCR reaction were generated from a set
of orthogonal 25-nt sequences (43). These sequences
were trimmed to 20 nt and selected for (i) a
narrow melting temperature range (70 to 80°C),
(ii) the absence of consecutive repeats of 3 or
more identical nucleotides, and (iii) the presence
of a GC clamp—one of the two 3′ terminal bases
must be G or C. To further improve specificity,
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these sequences were then screened against the
human transcriptome by using Basic Local Align-
ment Search Tool+ (BLAST+) (44), and primers
with 14 or more contiguous bases of homology
were eliminated. Last, BLAST+ was again used to
identify and exclude primers that had an 11-nt
homology region at the 3′ end of any other
primer or a 5-nt homology region at the 3′ end
of the T7 promoter. The forward primer sequences
(primer 1) were determined as described above,
whereas the reverse primers each contain a 20-nt
sequence as described above plus a 20-nt T7
promoter sequence to facilitate amplification via
in vitro transcription (primer 2). The primer se-
quences used in the 140-gene and 1001-gene ex-
periments are listed in Table 1.
Thirty-nt-long readout sequenceswere created

by concatenating fragments of the same orthog-
onal primer set generated above by combining
one 20-nt primer with a 10-nt fragment of an-
other. These readout sequenceswere then screened,
by using BLAST+, for orthogonality with the in-
dex primer sequences andother readout sequences
(no more than 11 nt of homology) and for poten-
tial off-target binding sites in the human genome
(no more than 14 nt of homology). Fluorescently
labeled readout probes with sequences comple-
mentary to the readout sequences were used to
probe these readout sequences, one in each hy-
bridization round. All used readout probes se-
quences are listed in Table 2.
The readout probes used for the 140-gene

libraries were probes 1 through 16. The readout
probes used for the 1001-gene experiment were
probes 1 through 14. “/3Cy5Sp/” indicates a 3′ Cy5
modification.
To design the central targeting sequences of

the encoding probes, we first compiled the abun-
dance of different transcripts in IMR90 cells
using Cufflinks v2.1 (45), total RNA data from the
Encyclopedia of DNA Elements (ENCODE)
project (46), and human genome annotations
from Gencode v18 (20). Probes were designed
from gene models corresponding to the most
abundant isoform by using OligoArray2.1 (47)
with the following constraints: The target se-
quence region is 30-nt long; the melting tem-
peratures of the hybridized region of the probe
and cellular RNA target is greater than 70°C;
there is no cross hybridization targets with melt-
ing temperatures greater than 72°C; there is no
predicted internal secondary structures with
melting temperatures greater than 76°C; and
there is no contiguous repeats of six or more
identical nucleotides. Melting temperatures were
adjusted to optimize the specificity of these
probes and minimize secondary structure while

still producing sufficient numbers of probes for
our libraries. To decrease computational cost,
isoforms were divided into 1-kb regions for probe
design. Using BLAST+, all potential probes that
mapped to more than one cellular RNA species
were rejected. Probes with multiple targets on
the same RNA were kept.
For each gene in the 140-gene experiments, we

generated 198 putative encoding probe sequences
by concatenating the appropriate index primers,
readout sequences, and targeting regions as shown
in fig S3. To address the possibility that con-
catenation of these sequences introduced new
regions of homology to off-target RNAs, we used
BLAST+ to screen these putative sequences against
all human ribosomal RNA (rRNA) and transfer
RNA (tRNA) sequences aswell as highly expressed
genes [genes with fragments per kilobase per mil-
lion reads (FPKM) > 10,000]. Probes with greater
than 14 nt of homology to rRNAs or tRNAs or
greater than 17 nt of homology to highly expressed
genes were removed. After these cuts, we had
~192 (with a standard deviation of 2) probes per
gene for both MHD4 codebooks used in the 140-
gene experiments. We followed the same proto-
col for the 1001-gene experiments: Starting with
96 putative targeting sequences per gene, we
obtained ~94 (with a standard deviation of 6)
encoding probes per gene after these additional
homology cuts. We decreased the number of en-
coding probes per RNA for the 1001-gene experi-
ments so that these probes could be synthesized
from a single 100,000-member oligopool as op-
posed to two separate pools. We designed each
encoding probe to contain two of the four read-

out sequences associated with each code word;
hence, only half of the bound encoding probes
can bind readout probe during any given hybrid-
ization round. We used ~192 or ~94 encoding
probes perRNA to obtainhigh signal-to-background
ratios for individual RNA molecules. The num-
ber of encoding probes per RNA could be sub-
stantially reduced but still allow single RNA
molecules to be identified (17, 48, 49). In addi-
tion, increasing the number of readout sequences
per encoding probe or using optical sectioning
methods to reduce the fluorescence background
may allow further reduction in the number of
the encoding probes per RNA.
We designed two types of misidentification

controls. The first control—blank words—were
not represented with encoding probes. The sec-
ond type of control—no-targetwords—had encod-
ing probes that were not targeting any cellular
RNA. The targeting regions of these probes were
composed of random nucleotide sequences sub-
ject to the same constraints used to design the
RNA targeting sequences described above.More-
over, these random sequences were screened
against the human transcriptome to ensure that
they contain no substantial homology (>14-nt) to
any human RNA. The 140-gene measurements
contained five blank words and five no-target
words. The 1001-gene measurements contained
11 blank words and five no-target words.

Probe synthesis

The encoding probes were synthesized by using
the following four steps, and this synthesis pro-
tocol is illustrated in fig. S3.
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Table 2. All used readout probes sequences.

Bit Readout probes

1 CGCAACGCTTGGGACGGTTCCAATCGGATC/3Cy5Sp/
2 CGAATGCTCTGGCCTCGAACGAACGATAGC/3Cy5Sp/
3 ACAAATCCGACCAGATCGGACGATCATGGG/3Cy5Sp/
4 CAAGTATGCAGCGCGATTGACCGTCTCGTT/3Cy5Sp/
5 GCGGGAAGCACGTGGATTAGGGCATCGACC/3Cy5Sp/
6 AAGTCGTACGCCGATGCGCAGCAATTCACT/3Cy5Sp/
7 CGAAACATCGGCCACGGTCCCGTTGAACTT/3Cy5Sp/
8 ACGAATCCACCGTCCAGCGCGTCAAACAGA/3Cy5Sp/
9 CGCGAAATCCCCGTAACGAGCGTCCCTTGC/3Cy5Sp/
10 GCATGAGTTGCCTGGCGTTGCGACGACTAA/3Cy5Sp/
11 CCGTCGTCTCCGGTCCACCGTTGCGCTTAC/3Cy5Sp/
12 GGCCAATGGCCCAGGTCCGTCACGCAATTT/3Cy5Sp/
13 TTGATCGAATCGGAGCGTAGCGGAATCTGC/3Cy5Sp/
14 CGCGCGGATCCGCTTGTCGGGAACGGATAC/3Cy5Sp/
15 GCCTCGATTACGACGGATGTAATTCGGCCG/3Cy5Sp/
16 GCCCGTATTCCCGCTTGCGAGTAGGGCAAT/3Cy5Sp/

Table 1. Primer sequences used in the 140-gene and 1001-gene experiments.

Experiment name
Primer 1 sequence
(index primer 1)

Primer 2 sequence
(T7 promoter plus the reverse complement of index primer 2)

140-gene codebook 1 GTTGGTCGGCACTTGGGTGC TAATACGACTCACTATAGGGAAAGCCGGTTCATCCGGTGG
140-gene codebook 2 CGATGCGCCAATTCCGGTTC TAATACGACTCACTATAGGGTGATCATCGCTCGCGGGTTG
1001-gene CGCGGGCTATATGCGAACCG TAATACGACTCACTATAGGGCGTGGAGGGCATACAACGC
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Step 1: The template oligopool (CustomArray)
was amplified via limited-cycle PCR on a Bio-Rad
CFX96 by using primer sequences specific to the
desired probe set. To facilitate subsequent ampli-
fication via in vitro transcription, the reverse
primer contained the T7 promoter. All primers
were synthesized by Integrated DNA Technol-
ogies (IDT). This reaction was column purified
(Zymo DNA Clean and Concentrator, D4003).
Step 2: The purified PCR products were then

further amplified ~200-fold and converted into
RNA via a high yield in vitro transcription ac-
cording to the manufacturer’s instructions [New
England Biolabs (NEB), E2040S]. Each 20 mL re-
action contained ~1 mg of template DNA from
above, 10 mM of each NTP, 1× reaction buffer,
1× RNase inhibitor (Promega RNasin, N2611)
and 2 mL of the T7 polymerase. This reaction was
incubated at 37°C for 4 hours to maximize yield.
This reaction was not purified before the fol-
lowing steps.
Step 3: The RNA products from the above in

vitro transcription reaction were then con-
verted back into DNA via a reverse transcrip-
tion reaction. Each 50-mL reaction contained
the unpurified RNA produce from step 2 sup-
plemented with 1.6 mM of each dNTP, 2 nmol
of a reverse transcription primer, 300 units of
Maxima H- reverse transcriptase (Thermo Sci-
entific, EP0751), 60 units of RNasin, and a final
1× concentration of the Maxima RT buffer. This
reaction was incubated at 50°C for 45 min, and
the reverse transcriptase was inactivated at 85°C
for 5 min. The templates for the 140-gene libraries
contain a common priming region for this re-
verse transcription step; thus, a single primer
was used for this step when creating these probes.
Its sequence was CGGGTTTAGCGCCGGAAATG.
A common priming region was not included for
the 1001-gene library; thus, the reverse transcrip-
tion was conducted with the forward primer:
CGCGGGCTATATGCGAACCG.
Step 4: To remove the template RNA, 20 mL of

0.25 M EDTA and 0.5 N NaOH was added to the
above reaction to selectively hydrolyze RNA, and
the sample was incubated at 95°C for 10 min.
This reaction was then immediately purified by
means of column purification using a 100-mg-
capacity column (Zymo Research, D4030) and
the Zymo Oligo Clean and Concentrator proto-
col. The final probes were eluted in 100 mL of
ribonuclease (RNase)–free deionized water, evap-
orated in a vacuum concentrator, and then re-
suspended in 10 mL of encoding hybridization
buffer (recipe below). Probeswere stored at –20°C.
Denaturing polyacrylamide gel electrophoresis
and absorption spectroscopy were used to con-
firm the quality of the probes and revealed that
this probe synthesis protocol converts 90 to 100%
of the reverse-transcriptionprimer into full-length
probe and of the probe that is constructed, 70 to
80% is recovered during the purification step.
This protocol is similar to another recently pub-
lished protocol (23) but provides a substantially
larger yield.
Fluorescently labeled readout probes have se-

quences complementary to the readout sequences

described above and a Cy5 dye attached at the 3′
end. These probes were synthesized and purified
by means of high-performance liquid chroma-
tography (HPLC) by IDT.

Sample preparation and labeling
with encoding probes

Human primary fibroblasts (American Type Cul-
ture Collection, IMR90), a commonly used cell
line with a previously determined transcriptome
(46), were used in this work. These cells are rel-
atively large and flat, facilitating wide-field im-
aging without the need for optical sectioning.
Cells were cultured with Eagle’s Minimum Es-
sential Medium. Cells were plated on 22-mm, #1.5
coverslips (Bioptechs, 0420-0323-2) at 350,000
cells per coverslip and incubated at 37°C with 5%
CO2 for 48 to 96 hours within petri dishes. Cells
were fixed for 20 min in 4% paraformaldehyde
(ElectronMicroscopy Sciences, 15714) in 1× phos-
phate buffered saline (PBS; Ambion, AM9625) at
room temperature, reduced for 5 min with 0.1%
w/v sodium borohydride (Sigma, 480886) in wa-
ter to reduce background fluorescence, washed
three times with ice-cold 1× PBS, permeabilized
for 2 min with 0.5% v/v Triton (Sigma, T8787) in
1× PBS at room temperature, and washed three
times with ice cold 1× PBS.
Cells were incubated for 5 min in encoding

wash buffer comprising 2× saline-sodium citrate
buffer (SSC) (Ambion, AM9763), 30% v/v form-
amide (Ambion, AM9342), and 2 mM vanadyl
ribonucleoside complex (NEB, S1402S). Ten mi-
croliters of 100 mM (140-gene experiments) or
200 mM (1001-gene experiments) encoding probes
in encoding hybridization buffer was added to
the cell-containing coverslip and spread uniformly
by placing another coverslip on top of the sample.
Sampleswere then incubated in a humid chamber
inside a 37°C-hybridization oven for 18 to 36 hours.
Encoding hybridization buffer is composed of en-
coding wash buffer supplemented with 1 mg/mL
yeast tRNA (Life technologies, 15401-011) and 10%
w/v dextran sulfate (Sigma, D8906-50G).
Cells were then washed with encoding wash

buffer, incubated at 47°C for 10min, and thiswash
was repeated for a total of three times. A 1:1000
dilution of 0.2-mm-diameter carboxylate-modified
orange fluorescent beads (Life Technologies,
F-8809) in 2×SSC was sonicated for 3 min and
then incubated with the sample for 5 min. The
beads were used as fiducial markers to align
images obtained frommultiple successive rounds
of hybridization, as described below. The sample
was washed once with 2×SSC, and then post-
fixed with 4% v/v paraformaldehyde in 2×SSC at
room temperature for 30 min. The sample was
thenwashed three times with 2×SSC and either
imaged immediately or stored for no longer than
12 hours at 4°C before imaging. All solutions
were prepared as RNase-free.

MERFISH imaging

The sample coverslip was assembled into a
Bioptech’s FCS2 flow chamber, and the flow
through this chamber was controlled via a home-
built fluidics system composed of three computer-

controlled eight-way valves (Hamilton, MVP and
HVXM 8-5) and a computer-controlled peristaltic
pump (Rainin, Dynamax RP-1). The sample was
imaged on a home-built microscope constructed
around an Olympus IX-71 body and a 1.45 NA,
100× oil immersion objective and configured for
oblique incidence excitation. The objective was
heated to 37°C with a Bioptechs objective heater.
Constant focus was maintained throughout the
imaging process with a home-built, autofocusing
system. Illumination was provided at 641, 561,
and 405 nm by using solid-state lasers (MPB
communications, VFL-P500-642; Coherent, 561-
200CWCDRH; and Coherent, 1069413/AT) for
excitation of our Cy5-labeled readout probes,
the fiducial beads, and nuclear counterstains, re-
spectively. These lines were combined with a
custom dichroic (Chroma, zy405/488/561/647/
752RP-UF1) and the emission was filtered with
a custom dichroic (Chroma, ZET405/488/561/
647-656/752m). Fluorescence was separated with
a QuadView (Photometrics) by using the dichroics
T560lpxr, T650lpxr, and 750dcxxr (Chroma) and
the emission filters ET525/50m, WT59550m-2f,
ET700/75m, and HQ770lp (Chroma) and imaged
with an EMCCD camera (Andor, iXon-897). The
camera was configured so that a pixel corre-
sponds to 167 nm in the sample plane. The en-
tire system was fully automated, so that imaging
and fluid handling were performed for the entire
experiment without user intervention.
Sequential hybridization, imaging, and bleach-

ing proceeded as follows. One milliliter of 10 nM
of the appropriate fluorescently labeled readout
probe in readout hybridization buffer (2×SSC;
10% v/v formamide, 10% w/v dextran sulfate,
and 2 mM vanadyl ribonucleoside complex) was
flown across the sample, flow was stopped, and
the sample was incubated for 15 min. Then 2 mL
of readout wash buffer (2×SSC, 20% v/v form-
amide, and 2 mM vanadyl ribonucleoside com-
plex) was flown across the sample, flow was
stopped, and the samplewas incubated for 3min.
Two milliliters of imaging buffer comprising
2×SSC, 50 mM TrisHCl pH 8, 10% w/v glucose,
2 mMTrolox (Sigma-Aldrich, 238813), 0.5 mg/mL
glucose oxidase (Sigma-Aldrich, G2133), and
40 mg/mL catalase (Sigma-Aldrich, C30) was flown
across the sample (50). Flow was then stopped,
and then ~75 to 100 regions were exposed to
~25mW 642-nm and 1 mW of 561-nm light and
imaged. Each region was 40 by 40 mm. The laser
powers were measured at the microscope back-
port. Because the imaging buffer is sensitive to
oxygen (51), the ~50 mL of imaging buffer used
for a single experiment was made fresh at the
beginning of the experiment and then stored
under a layer of mineral oil throughout the mea-
surement. Buffer stored in this fashion was sta-
ble for more than 24 hours.
After imaging, the fluorescence of the readout

probes was extinguished via photobleaching.
The sample was washed with 2 mL of photo-
bleaching buffer (2×SSC and 2 mM vanadyl
ribonucleoside complex), and each imaged re-
gion of the sample was exposed to 200 mW of
641-nm light for 3 s. To confirm the efficacy of
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this photobleaching treatment, imaging buffer
was reintroduced, and the sample was imaged
as described above.
The above hybridization, imaging, and photo-

bleaching process was repeated either 16 times
for the 140-genemeasurementsbyusing theMHD4
code or 14 times for the 1001-genemeasurements
by using the MHD2 code. An entire experiment
was typically completed in ~20 hours.
After completion of imaging, 2 mL of a 1:1000

dilution of Hoescht (ENZ-52401) in 2×SSC was
flown through the chamber to label the nuclei
of the cells. The sample was then washed im-
mediately with 2 mL of 2×SSC followed by 2 mL
of imaging buffer. Each region of the sample
was then imaged once again with ~1 mW of
405-nm light.
Because we imaged cells using wide-field im-

agingwith oblique-incidence illumination, without
optical sectioning and z-scanning, we quantified
the fraction of individual RNA species that was
outside the axial range of our imaging geometry
for six different RNA species using conventional
smFISH. For this purpose, we optically sectioned
these cells by collecting stacks of images at differ-
ent focal depths through the entire depth of the
cells. We aligned the images in consecutive focal
planes and then computed for each cell the frac-
tion of RNAs that were detected in the three-
dimensional stack but not in the basal focal
plane.We found that only a small fraction, 15 T 1%
(mean T SEM across six different RNA species) of
RNA molecules were outside the imaging range
of a fixed focal plane without z-scanning. These
measurements also confirmed that our excita-
tion geometry illuminated the full depth of our
cells. From an imaging perspective, any optical
sectioning technique could be used inMERFISH
to allow the imaging of RNAs in thicker cells or
tissues.

Construction of measured words

Fluorescent spots were identified and localized
in each image by using a multi-Gaussian-fitting
algorithm (38) assuming a Gaussian with a uni-
form width of 167 nm. This algorithm was used
to allow partially overlapping spots to be distin-
guished and individually fit. RNA spots were
distinguished from background signal—signal
arising from probes bound nonspecifically, by
setting the intensity threshold required to fit a
spot with this software. Because of variation in
the brightness of spots between rounds of hy-
bridization, this threshold was adjusted appro-
priately for each hybridization round in order to
minimize the combined average of the 1→0 and
0→1 error rates across all hybridization rounds
(140-gene measurements) or to maximize the
ratio of the number ofmeasuredwords with four
1 bits to those with three or five 1 bits (1001-gene
measurements). The location of the fiducial beads
was identified in each frame by using a faster
single-Gaussian fitting algorithm.
Images of the same sample region in different

rounds of hybridization were registered by ro-
tating and translating the image to align the two
fiducial beads within the same image that were

most similar in location after a coarse initial align-
ment via image correlation.All imageswere aligned
to a coordinate system established by the images
collected in the first round of hybridization. The
quality of this alignment was determined from
the residual distance between five additional
fiducial beads, and alignment error was typically
~20 nm.
Fluorescence spots in different hybridization

rounds were connected into a single string, cor-
responding to a potential RNA molecule, if the
distance between spots was smaller than 1 pixel
(167 nm). For each string of spots, the on-off
sequence of fluorescent signals in all hybridiza-
tion rounds were used to assign a binary word to
the potential RNA molecule, in which 1 was as-
signed to the hybridization rounds that con-
tained a fluorescent signal above threshold and 0
was assigned to the other hybridization rounds.
Measured words were then decoded into RNA
species by using the 16-bit MHD4 code or the 14-
bitMHD2 code discussed in themain text. In the
case of the 16-bit MHD4 code, if the measured
binary word matched the code word of a specific
RNA perfectly or differed from the code word by
one single bit, it was assigned to that RNA. In the
case of the 14-bit MHD2 code, only if the mea-
sured binary word matched the code word of a
specific RNA perfectly was it assigned to that
RNA. To determine the copy number per cell, the
number of each RNA species was counted in in-
dividual cells within each 40- by 40-mm imaging
area. This number accounts for the majority but
not all RNA molecules within a cell because a
fraction of the cell could be outside the imaging
area or focal depth. Tiling images of adjacent
areas and adjacent focal planes could be used to
improve the counting accuracy.
In the 140-gene experiments, some regions of

the cell nucleus occasionally contained toomuch
fluorescence signal to properly identify individ-
ual RNA spots. In the 1001-gene experiments, the
cell nucleus generally contained too much fluo-
rescent signal to allow identification of individ-
ual RNA molecules. These bright regions were
excluded from all subsequent analysis. This work
focuses on mRNAs, which are enriched in the
cytoplasm. To estimate the fraction of mRNAs
missed by excluding the nucleus region, we used
conventional smFISH to quantify the fraction of
molecules found inside the nucleus for six dif-
ferentmRNAs species.We found that only 5 T 2%
(mean T SEM across six RNA species) of these
RNA molecules are found in the nucleus. Use
of super-resolution imaging and/or optical sec-
tioning could potentially allow individual mole-
cules in these dense nucleus regions to be
identified, which will be particularly useful for
probing those noncoding RNAs that are enriched
in the nucleus.

smFISH measurements of individual genes

Pools of 48 fluorescently labeled (Quasar 670)
oligonucleotide probes per RNA were purchased
from Biosearch Technologies. Thirty-nucleotide
probe sequences were taken directly from a ran-
dom subset of the targeting regions used for the

multiplexed measurements. Cells were fixed
and permeabilized as described above. Ten mi-
croliters of 250 nM oligonucleotide probes in
encoding hybridization buffer (described above)
was added to the cell-containing coverslip and
spread uniformly by placing another coverslip
on top of the sample. Samples were then in-
cubated in a humid chamber inside a 37°C-
hybridization oven for 18 hours. Cells were then
washed with encoding wash buffer (described
above) at 37°C for 10 min, and this wash was
repeated for a total of three times. The sample
was then washed three times with 2×SSC and
imaged in imaging buffer by using the same im-
aging geometry as described above forMERFISH
imaging.

Bulk RNA sequencing

Total RNA was extracted from IMR90 cells cul-
tured as above using the Zymo Quick RNA
MiniPrep kit (R1054) according to the manufac-
turer’s instructions. Polyadenylated [poly(A)] RNA
was then selected (NEB, E7490), and a sequencing
library was constructed by using the NEBNext
Ultra RNA library preparation kit (NEB, E7530),
amplified with custom oligonucleotides, and
150–base pair (bp) reads were obtained on a
MiSeq. These sequences were aligned to the hu-
man genome (Gencode v18) and isoform abun-
dance was computed with cufflinks (45).

Calculation of the predicted scaling
and error properties of different
encoding schemes

Analytic expressions were derived for the depen-
dence of the number of possible code words, the
calling rate, and the misidentification rate on N.
The calling rate is defined as the fraction of RNA
molecules that are properly identified. The mis-
identification rate is defined as the fraction of
RNAmolecules that aremisidentified as a wrong
RNA species. For encoding schemeswith an error-
detection capability, the calling rate and misiden-
tification rate does not add up to 1 because a
fraction of the molecules not called properly can
be detected as errors and discarded and, hence,
not misidentified as a wrong species. These cal-
culations assume that the probability of misread-
ing bits is constant for all hybridization rounds
but differs for the 1→0 and 0→1 errors. Exper-
imentally measured average 1→0 and 0→1 error
rates (10 and 4%, respectively) were used for the
estimates shown in Fig. 1, B to D. For simplicity,
the word corresponding to all 0s was not re-
moved from calculations.
For the simple binary encoding scheme in

which all possibleN-bit binarywords are assigned
to different RNA species, the number of possible
code words is 2N. The number of words that
could be used to encode RNA is actually 2N −
1 because the code word “00…0” does not con-
tain detectable fluorescence in any hybridization
round, but for simplicity theword corresponding
to all 0s was not removed from subsequent cal-
culations. The error introduced by this approxi-
mation is negligible. For any given word withm
1s and N − m 0s, the probability of measuring
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that word without error—the fraction of RNAs
that is properly called—is

ð1 − p1Þmð1 − p0ÞN−m ð1Þ
where p1 is 1→0 error rate and p0 is 0→1 error
rate per bit. Because different words in this sim-
ple binary encoding scheme can have different
numbers of 1 bits, the calling rate for different
words will differ if p1 ≠ p0. The average calling
rate, reported in Fig. 1C, was determined from
the weighted average of the value of Eq. 1 for all
words. This weighted average is

1

2N
∑

m¼0

N
�
N
m

�
ð1 − p1Þmð1 − p0ÞN−m ð2Þ

where

�
N
m

�
is the binomial coefficient and cor-

responds to the number of words withm 1 bits in
this encoding scheme. Because in this encoding
scheme every error produces a binary word that
encodes a different RNA, the average misidenti-
fication rate for this encoding scheme, reported
in Fig. 1D, follows directly from Eq. 2:

1 −
1

2N
∑

m¼0

N
�
N
m

�
ð1 − p1Þmð1 − p0ÞN−m ð3Þ

To calculate the scaling and error properties of
the extended Hamming distance 4 (HD4) code, we
first created the generator matrix for the desired
number of data bits using standardmethods (21).
The generatormatrix determines the specific words
that are present in a given encoding scheme and
was used to directly determine the number of en-
codedwords as a function of the number of bits. In
this encoding scheme, the calling rate corresponds
to the fraction of wordsmeasured without error as
well as the fraction of words measured with a
single-bit error. For codewordswithm 1 bits, this
fraction is determinedby the following expression:

ð1 − p1Þmð1 − p0ÞN−m þ
mp11ð1 − p1Þm−1ð1 − p0ÞN−m þ
ðN −mÞp1

0ð1 − p1Þmð1 − p0ÞN−m−1 ð4Þ
where the first term is theprobability ofnotmaking
any errors, the second termcorresponds to the total
probability of making one 1→0 error at any of the
m 1 bits withoutmaking any other 0→1 errors, and
the final term corresponds to the total probability
of making one 0→1 error at any of theN-m 0 bits
withoutmaking any 1→0 errors. Because the num-
ber of 1 bits can differ between words in this
encoding scheme, the average calling rate reported
in Fig. 1C was computed from a weighted average
over Eq. 4 for different values ofm. The weight for
each term was determined from the number of
words that contain m 1 bits as determined from
the generator matrix described above.
Because RNA-encoding words are separated

by a minimumHamming distance of 4, at least 4
errors are required to switch one word into an-
other. If error correction is applied, then 3 or 5
errors could also convert one RNA into another.
Thus, we estimate themisidentification rate from
all possible combinations of 3-bit, 4-bit, and 5-bit
errors for code words with m 1 bits. Technically,
>5-bit errors could also convert one RNA into

another, but the probability of making such er-
rors is negligible because of the small per-bit er-
ror rate. We approximate this expression with

∑
i¼0
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m
i

��
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�
pi1p

4−i
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��
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pi
1p

5−i
0 ð1−p1Þm−ið1−p0ÞN−m−ð5−iÞ

ð5Þ
The first sum corresponds to all of the ways in

which exactly four mistakes can be made. Sim-
ilarly, the second and third sums correspond to
all of the ways in which exactly three or five
mistakes can be made. Equation 5 provides an
upper bound for the misidentification rate be-
cause not all 3-, 4-, or 5-bit errors produce a word
that matches or would be corrected to another
legitimate word. Again because the number of
1 bits can differ between words, the average mis-
identification rate reported in Fig. 1D is calcu-
lated as a weighted average of Eq. 5 over the
number of words that have m 1 bits.
To generate our MHD4 code in which the

number of 1 bits for each codeword is set to 4, we
first generated the HD4 codes as described above,
and then removed all code words that did not
contain four 1s. The calling rate of this code,
reported in Fig. 1C, was directly calculated from
Eq. 4, but with m = 4 because all code words in
this code have four 1 bits. The misidentification
rate of this code, reported in Fig. 1D, was cal-
culated by modifying Eq. 5 with the following
considerations: (i) the number of 1 bits, m, was
set to 4 and (ii) errors that produce words that
do not contain three, four, or five 1 bits were
excluded. Thus, the expression in Eq. 5 was
simplified to
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Again, this expression is an upper bound on the
actualmisidentification rate because not allwords
with four 1s are valid code words.

Estimates of the 1→0 and 0→1 error rates
for each hybridization round

To compute the probability ofmisreading a bit at
a given hybridization round, we used the error-
correcting properties of the MHD4 code. Briefly,
the probabilities of 1→0 or 0→1 errors were de-
rived in the following way. Let the probability of

making an error at the ith bit,—ith hybridization
round—be pi and the actual number of RNAmol-
ecules of the given species be A, then the num-
ber of exact matches for this RNA will be

WE ¼ A∏
i¼1

16
ð1 − piÞ, and the number of one-bit

error corrected matches for this RNA corre-
sponding to errors at the ith bit will be Wi ¼
A pi

ð1 − piÞ ∏j¼1

16
ð1 − pjÞ. The pi can be directly derived

from the ratio: Wi=WE ¼ pi
ð1 − piÞ. This ratio as-

sumes that the 1-bit error-corrected counts were
only generated from single-bit errors from the
correct word and thatmulti-error contamination
from other RNA words is negligible. Given that
our error rate per hybridization round is small
and that it takes at least three errors to convert
one RNA-encoding word into a word that would
be misidentified as another RNA, the above ap-
proximation should be a good one.
To compute the average 1→0 or 0→1 error

probabilities for each of the 16 hybridization
rounds, we use the above approach to calculate
the per-bit error rates for each bit of every gene,
sort these errors on the basis of whether they
correspond to a 1→0 or a 0→1 error, and then
take the average of these errors for each bit
weighted by the number of counts observed for
the corresponding gene.

Estimates of the calling rate for individual
RNA species from actual imaging data

With the estimates of the 1→0 or 0→1 error
probabilities for each round of hybridization as
determined above, it is possible to estimate the
calling rate for each RNA according to the spe-
cific word used to encoded it. Specifically, the
fraction of an RNA species that is called correctly
is determined by

∏
i¼1

N
ð1 − piÞ þ ∑

j¼1

N pj

ð1 − pjÞ∏i¼1

N
ð1 − piÞ ð7Þ

where the first term represents the probability of
observing an exact match of the code word and
the second term represents the probability of ob-
serving an error-corrected match (with 1-bit er-
ror). The values of the per-bit error rate pi for
each RNA species are determined by the specific
code word for that RNA and the measured 1→0
or 0→1 error rates for each round of hybridization.
If the code word of the RNA contains a 1 in the ith
bit, then pi is determined from the 1→0 error rate
for the ith hybridization round; if the word con-
tains a 0 in the ith bit, pi is determined from the
0→1 error rate for the ith hybridization round.

Hierarchical clustering analysis of the
co-variation in RNA abundance

Hierarchical clustering of the covariation in gene
expression for both the 140- and 1001-gene ex-
periments was conducted as follows. First, the
distance between every pair of genes was deter-
mined as 1 minus the Pearson correlation coef-
ficient of the cell-to-cell variation of the measured
copy numbers of these two RNA species, both
normalized by the total RNA counted in the cell.
Thus, highly correlated genes are “closer” to

aaa6090-12 24 APRIL 2015 • VOL 348 ISSUE 6233 sciencemag.org SCIENCE

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org on January 04, 2022



one another, and highly anticorrelated genes are
“further” apart. An agglomerative hierarchical
cluster tree was then constructed from these dis-
tances using the unweighted pair group method
with arithmeticmean (UPGMA). Specifically, start-
ing with individual genes, we constructed hier-
archical clusters by identifying the two clusters
(or individual genes) that are closest to one an-
other according to the arithmetic mean of the
distances between all intercluster gene pairs. The
pairs of clusters (or individual genes) with the
smallest distance are then grouped together, and
the process is repeated. The matrix of pairwise
correlations was then sorted according to the
order of the genes within these trees.
Groups of genes with substantial covariations

were identified by selecting a threshold on the
hierarchical cluster tree (indicated by the dashed
lines in Figs. 3D and 6A) that produced ~10
groups of genes, each of which contains at least
four members for the 140-gene experiments or
~100 groups each of which contains at least three
members for the 1001-gene experiments. One
can change the threshold in order to identify ei-
thermore tightly coupled smaller groups or larger
groups with relatively loose coupling.
A probability value for the confidence that a

gene belongs to a specific group was determined
by computing the difference between the average
correlation coefficient between that gene and all
other members of that group and the average
correlation coefficient between that gene and all
other measured genes outside that group. The
significance (P value) of this difference was de-
terminedwith the student’s t test and is provided
in tables S2 and S4.
Because hierarchical clustering is inherently a

one-dimensional analysis—any given genes can
only be amember of a single group—this analysis
does not allow all correlated gene groups to be
identified. Higher-dimension analysis, such as
principal component analysis or k-means clus-
tering, could be used to identify more covarying
gene clusters (30).

Analysis of RNA spatial distributions

To identify genes that have similar spatial dis-
tributions, we subdivided each of the measured
cells into 2 by 2 regions and calculated the frac-
tion of each RNA species present in each of these
bins. To control for the fact that some regions of
the cell naturally contain more RNA than others,
we calculate the enrichment for each gene—the
ratio of the observed fraction in a given region
for a given RNA species to the average fraction
observed for all genes in that same region. For
each pair of RNA species, we then determined
the Pearson correlation coefficient of the region-
to-region variation in enrichment of these two
RNA species for each cell and averaged the cor-
relation coefficients over ~400 cells imaged in
seven independent data sets. We then clustered
RNA species on the basis of these average cor-
relation coefficients using the same hierarchical
clustering algorithm described above. Because of
the large number of cells used for the analysis,
we found that the coarse spatial binning (2 by 2

regions per cell) was sufficient to capture the spa-
tial correlation between genes, and finer binning
did not produce more significantly correlated
groups.
To measure the distances of genes from the

nuclei and from the cell edge, we first used bright-
ness thresholds on our cell images to segment
the nuclei and identify the cell edge. We then
measured the distance from every RNAmolecule
to the nearest part of the nucleus and nearest
part of the cell edge. For each data set, we com-
puted the average distance for each RNA species
averaged over all the cells measured. We then
averaged these distances for the group I genes,
group II genes, or all genes. Only those RNA
species with at least 10 counts per cell were used
in this analysis to minimize statistical error on
the distance values.

GO analysis

Groups of genes were selected from the hierar-
chical trees as discussed above. A collection of
GO terms (31) was determined for all measured
RNA species as well as the RNA species asso-
ciated with each group from the most recent hu-
man GO annotations (http://geneontology.org/
page/download-annotations) by using both the
annotated GO terms and terms immediately up-
stream or downstream of the found annotations.
The enrichment of these annotations was calcu-
lated from the ratio of the fraction of genes
within each group that have this term to the
fraction of all measured genes that have this
term and the P value for this enrichment was
calculated via the hypergeometric function. Only
statistically significantly enriched GO terms with
a P value less than 0.05 were considered.
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Multiplexed RNA imaging in single cells
The basis of cellular function is where and when proteins are expressed and in what quantities. Single-molecule
fluorescence in situ hybridization (smFISH) experiments quantify the copy number and location of mRNA molecules;
however, the numbers of RNA species that can be simultaneously measured by smFISH has been limited. Using
combinatorial labeling with error-robust encoding schemes, Chen et al. simultaneously imaged 100 to 1000 RNA
species in a single cell. Such large-scale detection allows regulatory interactions to be analyzed at the transcriptome
scale.
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