Mapping Snps And Peaks To Genes In R
Dec 6, 2016
Mapping SNPs and peaks to genes in R
We are often interested in mapping mutations or SNPs to genes, or peaks to genes, or genes to regions of copy number alteration, etc. The general computational problem is quite similar for all these cases: we have two sets of genomic regions that we seek to overlap. This can be accomplished very quickly in R using GenomicRanges
. To learn more about GenomicRanges
, consult Bioconductor.
In this particular tutorial, I want to map a set of SNPs to genes.
# Sample snps
snps <- c("1:11873", "1:69100", "1:752761")
# Sample genes from GTF
gtfFile <- 'Homo_sapiens.GRCh37.75.gtf'
gtf <- read.table(gtfFile, header=F, stringsAsFactors=F, sep='\t', nrows=1000) # limit number of rows for testing
gtf.gene <- gtf[gtf[,3]=="gene", c(1,4,5)]
gene.names <- unlist(lapply(gtf[gtf[,3]=="gene", 9], function(x) {
y <- strsplit(x, ';')[[1]][2]
gsub(' gene_name ', '', y)
}))
rownames(gtf.gene) <- gene.names
head(gtf.gene)
## V1 V4 V5
## DDX11L1 1 11869 14412
## WASH7P 1 14363 29806
## MIR1302-10 1 29554 31109
## FAM138A 1 34554 36081
## OR4G4P 1 52473 54936
## OR4G11P 1 62948 63887
Let’s define a few helper functions to help out.
# Define a few helper functions
#' Convert from string to range
#'
#' @param pos A vector of strings ex. chr1 2938302 2938329
#' @param delim Delimiter for string splitting
#' @param region Boolean of whether region or just one position
#'
#' @returns Dataframe of ranges
#'
string2range <- function(pos, delim=' ', region=TRUE) {
posp <- as.data.frame(do.call(rbind, strsplit(pos, delim)))
posp[,1] <- posp[,1]
posp[,2] <- as.numeric(as.character(posp[,2]))
if(region) {
posp[,3] <- as.numeric(as.character(posp[,3]))
} else {
posp[,3] <- posp[,2]
}
return(posp)
}
#' Convert from ranges to GRanges
#'
#' @param df Dataframe with columns as sequence name, start, and end
#'
#' @returns GRanges version
#'
range2GRanges <- function(df) {
require(GenomicRanges)
require(IRanges)
gr <- GenomicRanges::GRanges(
seqnames = df[,1],
ranges=IRanges(start = df[,2], end = df[,3])
)
return(gr)
}
Now let’s convert our SNPs to GRanges
.
# convert SNPs to GRanges
snps.ranges <- string2range(snps, delim=":", region=FALSE)
head(snps.ranges)
## V1 V2 V3
## 1 1 11873 11873
## 2 1 69100 69100
## 3 1 752761 752761
snps.granges <- range2GRanges(snps.ranges)
names(snps.granges) <- snps
head(snps.granges)
## GRanges object with 3 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## 1:11873 1 [ 11873, 11873] *
## 1:69100 1 [ 69100, 69100] *
## 1:752761 1 [752761, 752761] *
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
# convert genes to GRanges
gtf.granges <- range2GRanges(gtf.gene)
names(gtf.granges) <- gene.names
head(gtf.granges)
## GRanges object with 6 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## DDX11L1 1 [11869, 14412] *
## WASH7P 1 [14363, 29806] *
## MIR1302-10 1 [29554, 31109] *
## FAM138A 1 [34554, 36081] *
## OR4G4P 1 [52473, 54936] *
## OR4G11P 1 [62948, 63887] *
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
Now that we have our two GRanges
objects, we can easily overlap them using GenomicRanges::findOverlaps
.
r1 <- snps.granges
r2 <- gtf.granges
overlap <- GenomicRanges::findOverlaps(r1, r2)
# make vector of SNPs to genes
hits <- names(r2)[slot(overlap, "subjectHits")]
names(hits) <- names(r1)[slot(overlap, "queryHits")]
hits
## 1:11873 1:69100 1:752761 1:752761
## "DDX11L1" "OR4F5" "RP11-206L10.10" "FAM87B"
We can double check manually that indeed our SNPs fall within these identified genes.
r1[names(hits),]
## GRanges object with 4 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## 1:11873 1 [ 11873, 11873] *
## 1:69100 1 [ 69100, 69100] *
## 1:752761 1 [752761, 752761] *
## 1:752761 1 [752761, 752761] *
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
r2[hits,]
## GRanges object with 4 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## DDX11L1 1 [ 11869, 14412] *
## OR4F5 1 [ 69091, 70008] *
## RP11-206L10.10 1 [745489, 753092] *
## FAM87B 1 [752751, 755214] *
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
- Older
- Newer
RECENT POSTS
- Using AI to find heterogeneous scientific speakers on 04 November 2024
- The many ways to calculate Moran's I for identifying spatially variable genes in spatial transcriptomics data on 29 August 2024
- Characterizing spatial heterogeneity using spatial bootstrapping with SEraster on 23 July 2024
- I use R to (try to) figure out which hospital I should go to for shoppable medical services by comparing costs through analyzing Hospital Price Transparency data on 22 April 2024
- Cross modality image alignment at single cell resolution with STalign on 11 April 2024
- Spatial Transcriptomics Analysis Of Xenium Lymph Node on 24 March 2024
- Querying Google Scholar with Rvest on 18 March 2024
- Alignment of Xenium and Visium spatial transcriptomics data using STalign on 27 December 2023
- Aligning 10X Visium spatial transcriptomics datasets using STalign with Reticulate in R on 05 November 2023
- Aligning single-cell spatial transcriptomics datasets simulated with non-linear disortions on 20 August 2023
TAGS
RELATED POSTS
- Using AI to find heterogeneous scientific speakers
- The many ways to calculate Moran's I for identifying spatially variable genes in spatial transcriptomics data
- Characterizing spatial heterogeneity using spatial bootstrapping with SEraster
- I use R to (try to) figure out which hospital I should go to for shoppable medical services by comparing costs through analyzing Hospital Price Transparency data